
RESEARCH BULLETIN MRL-0009

Thring Signatures and their Applications to Spender-Ambiguous Digital Cur-
rencies

Brandon Goodell1 and Sarang Noether2

Monero Research Lab

November 1, 2018

Abstract

We present threshold ring multi-signatures (thring signatures) for collaborative computation of ring

signatures, present a game of existential forgery for thring signatures, and discuss uses of thring sig-

natures in digital currencies that include spender-ambiguous cross-chain atomic swaps for confidential

amounts without a trusted setup. We present an implementation of thring signatures that we call link-

able spontaneous threshold anonymous group signatures, and prove the implementation existentially

unforgeable.

1 Introduction

Cryptocurrencies and e-cash schemes critically rely upon unforgeable digital signatures, and many use cases

exist for threshold signatures in these settings, ranging from multi-factor authentication in transaction ap-

proval to cross-chain atomic swaps. The idea is simple: a group of collaborating users decide upon a threshold

and some members of the group can collaborate to compute signatures just so long as more group mem-

bers agree to a computation than the threshold. Upon inception, Bitcoin used ECDSA on secp256k1 for

signatures, but this is by no means the only option available to cryptocurrency engineers. More recently,

Schnorr signatures [22] have gained popularity and functionality, including threshold multi-signatures as

presented in [15], and Okamoto signatures [19] have also been investigated for use in multi-signatures in

cryptocurrencies [10]. Other options, like ring signatures [13] or zerocoin-style accumulators [16] allow for

signer-ambiguous message authentication, where verifiers can check that a member of an anonymity set

authenticates a message, and yet have a negligible advantage in determining which member.

In the cryptocurrency setting, signer-ambiguous message authentication is necessary for spender ambigu-

ity. We interpret this ambiguity as a property regarding plausible deniability in the history of transactions:

financial systems employing these options allow for publicly verifiable ledgers yet allow users the ability to

at least plausibly deny their involvement in any one transaction (or some small set of them). It is therefore

natural to seek threshold extensions to ambiguous message authentication like ring signatures. These ring sig-

natures can also be exploited to construct ring confidential transactions in a digital currency. Multi-signature

functionality in a digital currency also allows, for example, cross-chain atomic swaps. Hence, a thresholdized

ring signature scheme can allow for spender-ambiguous cross-chain atomic swaps for confidential amounts

without a trusted set-up.

We refer to thresholdized ring signatures as thring signatures. Previous proposals for thring signatures

(e.g. [9], [12], [23]) are leaky (They reveal properties of the signing coalition such as the number of signers,

or even publish the list of signing public keys with signatures), or use key computations akin to those

1surae.noether@protonmail.com
2sarang.noether@protonmail.com

1

presented in [3], which are vulnerable to rogue key attacks. For these reasons, we find these proposals to be

inappropriate for use in privacy-focused digital currencies.

We construct a thring signature implementation using a Musig-style approach applied to the linkable

spontaneous anonymous group (LSAG) signatures of [13], taking into account the modifications presented in

[1] and [18] intended for use in digital currency applications. The Musig approach from [15] aggregates keys

with an approach first proposed in [20] that is resistant to rogue-key attacks. As is usual for multisignature

schemes, we replace the random data for use in signing with sums of data selected by participants, which is

revealed in a commit-and-reveal phase. Lastly, like the Musig approach, we include signing keys in signature

challenge computation which prevents oracle queries in the proof of existential unforgeability from taking

place in a bad order.

1.1 Our contribution

We present an LSTAG signature scheme, which resembles the Musig multi-signatures from [15], and is a

thresholdized version of LSAG signatures. We present a definition of existential unforgeability in the ring

signature setting and prove the scheme secure under this definition. We also make remarks on the difference

between our scheme and ostensible applications for cryptocurrency purposes.

The scheme we present is n-of-n but can be extended to m-of-n threshold schemes using standard tech-

niques, and can be extended to a multi-layered scheme for use in ring confidential transactions. The scheme

is aggregate-keyed, in the sense that signature verification does not require knowledge of the signing thresh-

old. Signature sizes are not dependent upon the number of colluding signers. The security proof is under

the plain public key model. We use the same three-step process of Musig, and verification of the signatures

proceeds identically to usual LSAG signatures.

In Section 2, we explain our notation, assumptions, and other pre-requisites. In Section 3, we loosely

explain how LSAG signatures presently work in Monero, how to apply the Musig thresholdizing heuristic to

them to obtain LSTAGs, and applications of LSTAGs for use in ring confidential transactions. In Section 4,

we define LSTAG signatures, present an implementation example. In Section A, we define an unforgeability

game for LSTAG signatures, prove the implementation from Section 4 is secure under this definition. We

also discuss linkability, exculpability, signer ambiguity, and key aggregation indistinguishability.

1.2 Related works and challenges

In [13], LSAG signatures were first described; modifications were suggested in [1]. In [14], confidential trans-

actions for use in digital currencies were first described, and in [18], ring signature extensions of confiden-

tial transactions using a key-vector extension of LSAG signatures called multi-layered linkable spontaneous

anonymous group (MLSAG) signatures were first described. We generally use the approach from [3] for

computing multi-signatures, with the Musig-style key aggregation from [20] and the commit-and-reveal ap-

proach of [15]. Our unforgeability proof, like that of [15], uses a double application of the rewind-on-success

forking method (ostensibly first presented in [13]).

Other multi-signature techniques, especially in the pairings- and learning-with-errors based worlds, are

available. See, for example, [8], a novel and quite general fully homomorphic thresholdizing set-up using

only one round of communication is described in the learning-with-errors environment, leading to fully

homomorphic threshold signatures and encryption. More recently, [7] uses a pairings-based setting to provide

compact multi-signatures with extremely valuable properties.

Note that the thresholdizing heuristic described in [3] presented a general multi-signature scheme in the

plain public key model, but also presented a detailed discussion of the knowledge-of-secret-key (KOSK)

2

assumption. It is worth noting that there are some problems with practically and securely implementing

schemes that are proven secure under the KOSK setting using proofs of possession of secret keys unless

special care is taken (see, for example, [21]). For this reason, we avoid the KOSK assumption, although

the security proofs for schemes such as ours are dramatically simpler in the KOSK setting with proofs

of possession replacing the certificate authority. In [20], the KOSK-free method of aggregating a shared

multi-signature public key we use here was presented which is resistant to rogue key attacks (albeit in a

pairings-based setting). An early version of Musig used a single round of communication, which was later

modified to include a commit-and-reveal stage to signing. Indeed, in [10] it is demonstrated that it is very

unlikely that a single round of communication in a Musig-like signature scheme can be proven secure under

the discrete logarithm hardness assumption.

For use in digital currency applications in ring confidential transactions, these thring signatures must

be further extended. For example, in applications to digital currencies employing (some variant of) the

Cryptonote protocol such as Monero, implementation must account for keypair vectors including a view key

in addition to a spend/signing key, and must account for one-time key computations. Proving the security of

our scheme under these extensions is beyond the scope of this document. For more detailed formalizations

of ring confidential transactions and thring signatures, see for example [11].

1.3 Special thanks

We want to specially thank the members of the Monero community who used the GetMonero.org Community

Forum Funding System to support the Monero Research Lab. Readers may also regard this as a statement

of conflict of interest, since our funding is denominated in Monero and provided directly by members of the

Monero community by the Forum Funding System. We also wish to extend particular thanks to Andrew

Poelstra and Yannick Seurin, and many others, for some extremely helpful comments.

2 Notation and assumptions

We generally use calligraphic font to denote PPT algorithms and oracles: A,A′,A′′,B are PPT algorithms,

H is a random oracle, SO is a signing oracle. We often grant an algorithm oracle access, which we denote

with a superscript: ASO means A has oracle access to SO. We shall often leave the superscripts implicit

for clarity, unless there is risk of confusion. We use teletype font to describe the inputs and outputs of

algorithms, or as the names of special algorithms from a cryptographic scheme: inpA is the input for A,

outA is the output, Sign is the signing algorithm in our implementation, and so on. Algorithms often come

with a distinguished failure symbol (or a set of them) which we denote ⊥: ⊥A is the failure symbol of A,

⊥Sign is the failure symbol of Sign, and so on.

We use miniscule english letters and greek letters for integers: n, r, q, `, i, j, k, α, η are all in N. For any

r ∈ N = {1, 2, . . .}, we denote the set of r elements {1, 2, . . . , r} with [r]. We use underlines to denote vectors,

ordered lists, sequences, and sets indexed by well-ordered indexing sets. For example, for an unordered list

of independent random oracles H indexed by some arbitrary finite set Λ with n = |Λ| elements, we can

harmlessly re-index and assume Λ = [n] and write H = {Hi}i∈[n].

For any n > 1, we denote Z/nZ with Zn. We assume a set-up phase is executed with a security parameter

η > 1 before beginning, resulting in some (p,G, G,H, φ,Φ), namely a cyclic group G of order p with generator

G such that elements from Zp and G admit η-bit representations, a sequence H of cryptographic hash

functions, and two key aggregation functions φ,Φ. We say an element of G is a public key, which we denote

these throughout this document with majuscule english letters. For example, A,B,C, T, P,X are public

3

keys, and P = {P`}`∈[r] denotes a sequence of r public keys. We say such a sequence is a ring if it is to be

used as input for a ring signature. For computing ring signatures with r ∈ N, r > 1 ring members, we allow

indices from [r] to “wrap around” by identifying the ring index r+ 1 with the ring index 1. We only use this

convention for ring member indices, not for other indices.

We say members of Zp are private keys. Since these are equivalence classes of integers, we also use

miniscule english letters to denote these private keys, but we tend to use different sets of letters than for

integers: a, b, t, p, and x are private keys from Zp. We say that some X ∈ G is a public key associated with

some private key x ∈ Zp if X = xG for the generator G specified above, and we match letters: the public

key associated with the private key a is A = aG, the public key associated with the private key b is B = bG,

and so on. For a list of private keys, say x = (x1, . . . , xn), we write the list of corresponding public keys as

X = (X1, . . . , Xn) where each Xi = xiG. We denote this X = xG at the risk of abusing notation.

We use the convention that φ(x, {X}) = x and Φ({X}) = X. Here, Φ takes as input a non-empty multiset

X = (X1, . . . , Xn) of public keys and produces as output a shared public key Xsh ← Φ(X), and φ takes as

input a private key xi with a non-empty multiset X of public keys (such that Xi = xiG in X at least once)

and produces as output a coefficient βi = φ(xi, X). Users set their private share as x∗i := βixi = φ(xi, X)xi.

We say Xsh is related to or a child of the keys in X and we use

Φ(X) :=
∑
i∈[n]

βiXi =
∑
i

x∗iG = Xsh.

We specify H, six arbitrary-length-input, η-bit-output cryptographic hash functions with independent

outputs

Hki : {0, 1}∗ → G Hcom : {0, 1}∗ → {0, 1}η Hagg : {0, 1}∗ → Zp

Hsig : {0, 1}∗ → Zp Hmsg : {0, 1}∗ → Zp Hsess : {0, 1}∗ → Zp

under the random oracle model. We denote concatenation of bitstrings with the symbol ||. Since elements of

Zp can be described with η bits, we may as well take Hagg, Hsig, Hcom, Hmsg, and Hsess to all five have the

same codomain. This way, for implementation purposes, these hash functions can be realized with a single

hash function Hsc : {0, 1}∗ → Zp using domain separation:

Hcom(x) :=Hsc(000 || x)

Hagg(x) :=Hsc(001 || x)

Hsig(x) :=Hsc(010 || x)

Hmsg(x) :=Hsc(011 || x)

Hsess(x) :=Hsc(111 || x)

This allows us to only require two hash functions for implementation, Hki and Hsc. Also, we only use Hsess

in an early example; our implementation could use just the first four Hsc variants and use only two bits of

prefixes. Note that although these functions will each have η-bit outputs, their effective entropy is actually

somewhat lower due to this domain separation.

Of course, ifHki can be factored into someHki = µG ·H∗ki for someH∗ki : {0, 1}∗ → Zp (where µG : Zp → G
is the canonical hard-to-invert homomorphism defined by mapping x 7→ xG), then whoever knows this

factorization of Hki can compute the discrete logarithm of outputs of Hki, which is a highly undesirable

property. We assume no such factorization is easily computable.

4

3 Motivation of scheme

In this section, we describe the motivation behind our thring signature scheme. We begin by describing,

loosely, how Back-style LSAG signatures are computed using the particular CryptoNote-style key spaces.

We then describe a thresholdizing heuristic for use in constructing our implementation, and then we make

some brief comments on the application of these signatures in Monero.

3.1 Back-style LSAG signatures

In this section we provide a brief look at how signatures work in Cryptonote-styled digital currencies like

Monero. The signatures in [13] use key images that are dependent upon the ring of signers, making them

inappropriate for linkability in this setting. In [1], a modification was presented, which we summarize here.

Our description makes use of four cryptographic hash functions modeled as random oracles, Hsess, Hsig, Hki,

and Hmsg.

Consider first the CryptoNote-styled key spaces of Monero. Users have user keypairs (consisting of

a view key and a spend key) and they sign with signing keypairs (consisting of a transaction key and a

session key [alternately, a one-time key or stealth key]). Session keys are computed from user keypairs and

transaction keys; ring signatures are computed using the session keys. A generic keypair space is made

available, K = Z2
p ×G2 and both sorts of keypairs come from K.

A user keypair is denoted ((a, b), (A,B)) ∈ K and we say a is the private view key, b is the private spend

key, A is the public view key, and B is the public spend key. Honest users select their private keys uniformly

at random. A signing keypair is some ((t, p), (T, P)) ∈ K and we say t is the private transaction key, p is the

private session key, T is the public transaction key, and P is the public session key. Honest users receive the

public part of their transaction key T from a sender. In Monero, we say a public signing key pair (T, P) with

index i in some transaction is addressed to a public user key pair (A,B) if P = Hsess(aT, i)G + B. Given

T, a,B, i or t, A,B, i, ownership of a session key can be easily tested: merely check if P −Hsess(aT, i) = B.

Given T, a, b, i or given t, A, b, i, the private session key can be easily computed: p = Hsess(aT, i) + b. In the

sequel we “forget” the transaction index i for clarity in our notation.

If Alice has a user key ((a, b), (A,B)) ∈ K, has previously received a message containing some public

signing keys (T, P) addressed to (A,B), and Alice wishes to address some keys to Bob (who has public user

key (A′, B′)). Alice computes p, picks a new private transaction key t′ ← Zp, and computes a new public

session key P ′ := Hsess(t
′A′)G+B′ for Bob. Alice then sends (T ′, P ′) to Bob in a message m, and produces

a ring signature σ on a modified message m∗ that contains m and some ring P such that P ∈ P . Alice

computes the ring signature in the following way.

Alice selects a message m ∈ {0, 1}∗, computes her one-time key image J = pHki(P), and selects a ring of

public signing keys P = {P1, . . . Pr} such that, for a secret distinguished index π, Pπ = P . Alice assembles

a modified message m∗ = (m, P , J, T ′, P ′) and computes M = H(m∗). For each ` = 1, . . . , r, the signer

computes an elliptic curve point from the `th ring member H` := Hki(P`). The signer selects a random

secret scalar u
$← Zp and computes an initial temporary pair of points Lπ := uG, Rπ := uHπ. The signer

computes an initial commitment cπ+1 := Hsig(M,Lπ, Rπ). We shall later use the key prefixed variant of this

commitment, cπ+1 := Hsig(M,Pπ, Lπ, Rπ)

The signer proceeds through indices ` = π + 1, π + 2, . . . , r − 1, r, 1, 2, . . . , π − 1 by selecting a random

scalar s`, computing the next pair of points L` := s`G + c`P` and R` := s`H` + c`J , and computes the

next commitment c`+1 := Hsig(M,L`, R`) (or the key-prefixed variant c`+1 := Hsig(M,P`, L`, R`)). Once all

commitments c` have been computed, the signer then computes sπ := u− cπp for the distinguished index π.

5

σ = (c1, s) is the signature on m. Alice sends (m∗, σ) to Bob. We say the set of equations

c2 =Hsig(M, s1G+ c1P1, s1H1 + c1J) = Hsig(M,L1, R1)

c3 =Hsig(M,L2, R2)

...

cr =Hsig(M,Lr−1, Rr−1)

c1 =Hsig(M,Lr, Rr)

(or their key-prefixed variants) are the verification equations.

Upon receiving (m∗, σ), Bob parses m∗ = (m, P , J, (T ′, P ′)) and checks that M = H(m∗). Bob can easily

test if P ′ − Hsess(a
′T ′)G = B′ to see if he is the addressee for the keys. Bob can also extract the private

signing key by computing p′ = Hsess(a
′T ′) + b′. This way, Bob can perform the same procedure Alice does

above to pass new signing keys to other users. However, Bob may not be convinced the signature is genuine,

so he verifies the signature in the following way.

Given (m∗, σ), the verifier parses σ = (c1, s) and computes M = H(m∗). The verifier computes each

H` = Hki(P`). For each 1 ≤ ` ≤ r, the verifier finds L′` = s`G + c`P`, R
′
` = s`H` + c`J . The verifier uses

these to compute the (`+1)th commitment c`+1 = Hsig(M,L′`, R
′
`). After computing c = (c2, c3, . . . , cr, cr+1),

the verifier identifies index r + 1 with index 1 and checks that cr+1 = c1. If so, the verifier is convinced

the signature is genuine. A verifier can check whether two signatures are signed by the same key by simply

comparing key images.

3.2 Thresholdizing Back LSAG signatures with Musig-style aggregation

In this section, Alice and Bob wish to collaborate in constructing a 2-of-2 threshold version of an LSAG

signature to send a key to Charlene. Signatures are verified exactly as before without any knowledge that

they were constructed by a coalition rather than a single user. We proceed similarly to how we did before,

making changes according to the following heuristics.

Keys are sums: Replace spend keys with linear combinations of spend key shares.

Signing data are sums: Replace the (random) signing data with sums.

Commit and reveal: Insert a commitment step before revealing the signing data.

Key-prefixing: Insert the ring member into each signature challenge.

In Musig, the key-aggregation function is φ(bi, (A,B)) := Hagg(Bi, (A,B)). Note that computing

φ(bi, (A,B)) does not require the secret bi. Alice picks a new private user key (a1, b1), computes the public

key A1 = a1G, B1 = b1G, and sends (a1, B1) to Bob by secure side channel. Bob does the same by selecting

(a2, b2) and sending (a2, B2) to Alice. They compute a private shared view key ash = a1 + a2 and a public

shared spend key

Bsh = Hagg(B1, (A,B))B1 +Hagg(B2, (A,B))B2 = β1B1 + β2B2.

Alice and Bob could, alternatively, compute the private shared view key ash using any number of methods

of computing a shared secret.

Alice and Bob receive a message m containing some public signing keys (T, P) addressed to (Ash, Bsh)

so that P = Hsess(ashT)G + Bsh. Alice and Bob wish to pass this along to Charlene, who has public user

6

key (A′, B′), by ring multi-signing some message m′. Alice and Bob decide by side channel upon some ring

P = (P1, . . . , Pr) and a secret index π such that with Pπ = P . Alice and Bob compute by side channel the

key image

J =

Hsess(ashT)︸ ︷︷ ︸
view

+ b1Hagg(B1, (A,B))︸ ︷︷ ︸
first participant

+ b2Hagg(B2, (A,B))︸ ︷︷ ︸
second participant

Hki(P).

Alice and Bob also pick a new private transaction key t′ ← Zp (some member unilaterally selects or it is

decided upon collaboratively somehow, similarly to the shared view key). Alice and Bob compute a new

public session key for Charlene P ′ = Hsess(t
′A′)G + B′. Alice and Bob compute a basepoint for each ring

member, H` = Hki(P`). Then Alice and Bob execute the ring signing algorithm in the following steps.

Commit: Alice selects u1
$← Zp and Bob selects u2

$← Zp. Alice computes temporary pair of points

(L1,π, R1,π) = (u1G, u1Hπ) and Bob computes temporary pair of points (L2,π, R2,π) = (u2G, u2Hπ).

Alice selects random secret scalars s(1) = {s1,`}` 6=π and Bob selects random secret scalars s(2) =

{s2,`} 6̀=π. Alice computes her partial key image J1 = b1Hagg(B1, (A,B))Hki(P) and Bob com-

putes his partial key image J2 = b2Hagg(B2, (A,B))Hki(P). Alice computes the commitment com1 =

Hcom(L1,π, R1,π, s
(1)) and Bob computes the commitment com2 = Hcom(L2,π, R2,π, s

(2)). Alice sends

Bob (J1, com1) and Bob sends Alice (J2, com2).

Reveal: After receiving (J2, com2), Alice sends (L1,π, R1,π, s
(1)) to Bob; after receiving (J1, com1), Bob sends

(L2,π, R2,π, s
(2)) to Alice. After receiving (L2,π, R2,π, s

(2)), Alice checks that the commitment opens as

com2 = Hcom(L2,π, R2,π, s
(2)). If not, Alice outputs ⊥ and terminates. After receiving (L1,π, R1,π, s

(1)),

Bob checks that com1 = Hcom(L1,π, R1,π, s
(1)). If not, Bob outputs ⊥ and terminates.

Pre-compute signature: Alice and Bob compute the total key image J = J1 +J2 +Hsess(ashT), assemble

a modified message m∗ = (m, P , J, (T ′, P ′)), compute M = H(m∗), compute the sums Lπ = L1,π+L2,π,

Rπ = R1,π +R2,π, and s` = s1,` + s2,` for each ` 6= π. Alice and Bob can then compute the sequential

commitments c`+1 := Hsig(M,P`, L`, R`), proceeding through indices ` = π + 1, π + 2, . . . , π − 1 with

L` = s`G + c`P` and R` = s`H` + c`J . The partial signature σ̂ = (c1, {s`}`∈[r]\π) can be stored until

later.

Complete signature: Alice computes s1,π = u1 − cπβ1b1. Bob computes s2,π = u2 − cπβ2b2. Alice sends

s1,π to Bob and Bob sends s2,π to Alice. Either can compute sπ = s1,π+s2,π and publish the completed

signature σ = (c1, s) with the modified message m∗.

Observe that signature challenges have the ring member P` in their pre-image (compare to Section 3.1); this

forces oracle queries to occur in a safe order in our security proofs.

4 Linkable thring signatures and an implementation

Definition 4.0.1. A Linkable Thring Signature is a quadruple of collaboratively computed polynomial-time

algorithms (KeyGen, Sign, Ver, Link). We neglect notation for the common input η, the security parameter

in our description:

1. KeyGen produces as output a new random x
$← Zp, computes X = xG, and outputs outKeyGen = (x,X).

2. Sign is a multi-party algorithm executed by participants with private keys x = {xi}ni=1. Each partici-

pant uses their key xi as private input and all participants use some shared input inpSign = (m, P , π)

7

where m ∈ {0, 1}∗, P = {Pi}ri=1 is a ring of public keys, and π is a secret index satisfying 1 ≤ π ≤ r.

Sign outputs either a distinguished failure symbol outSign = ⊥Sign to each participant or some

outSign = (m∗, σ) to each participant where σ is a ring signature and m∗ = (m, P , J, auxSign) for a

linkability tag J and some auxiliary data auxSign.

3. Ver takes as input some inpVer = (m∗, σ) and outputs a bit outVer = b ∈ {0, 1}.

4. Link takes as input some inpLink = (m∗1, σ1), (m∗2, σ2) and outputs a bit outLink = b ∈ {0, 1}.

We include the auxiliary data in the modified message to allow, for example, packing of a recipients’ keys

into m∗, although we do not make use of aux directly.

Definition 4.0.2 (Correctness). For any m∗ ∈ {0, 1}∗ and any σ ∈ Z∗p, denote the event that Ver(m∗, σ) = 1

as V (m∗, σ). For any ((m, P , π, x), (m∗, σ)), denote the event that Sign(m, P , π, x) = (m∗, σ) and Pπ = Φ(X)

with S ((m, P , π, x), (m∗, σ)). We say a linkable thring signature scheme is correct when, by measuring the

probability over all input coins and all choices of hash functions, P [V (m∗, σ) | S ((m, P , π, x), (m∗, σ))] = 1

for any (m, P , π, x).

Definition 4.0.3 (Linkability). For any pair of signatures, (m∗1, σ1), and (m∗2, σ2), denote the event that

Link(m∗1, σ1,m
∗
2, σ2) = 1 as L(m∗1, σ1,m

∗
2, σ2). We define the sub-event S′(m∗1, σ1,m

∗
2, σ2) ⊆ V (m∗1, σ1) ∩

V (m∗2, σ2) as the event that there exists some x, some messages m1, m2, some rings P 1, P 2, and some indices

π1, π2 satisfying both Sign(m1, P 1, π1, x) = (m∗1, σ1) and Sign(m2, P 2, π2, x) = (m∗2, σ2). We say a linkable

thring signature scheme is linkable when, for any (m∗1, σ1,m
∗
2, σ2),

P [L(m∗1, σ1,m
∗
2, σ2) | S′(m∗1, σ1,m

∗
2, σ2)] = 1,

where this probability is measured over all participants’ coins and all choices of hash functions.

Example 4.0.4 (LSTAGs). We present a linkable thring signature scheme inspired by the LSAG signatures

of [13]; we say this scheme is a linkable spontaneous threshold anonymous group signature, or an LSTAG

signature.

We aggregate keys using the Musig approach by setting Φ(X) =
∑
i∈[n] βiXi where βi = φ(xi, X) =

Hagg(Xi, X). To ensure each participant computes keys in a consistent way, we assume users have, during

some set-up phase, decided upon a canonical linear ordering of keys in X such as a bit-by-bit little endian

lexicographic ordering. The ith member has a share of the private key x∗i = βixi = φ(xi, X)xi. The key

image is computed as is usual in Monero: for any private key x ∈ Zp, the key image is xHki(xG), so the key

image of Xsh is exactly
∑
i βixiHki(Xsh).

1. KeyGen selects some x ∈ Zp at random, computes X := xG, and outputs (x,X).

2. Sign is initiated by side channel when the group agrees upon a message m, decides upon a ring P

and a secret index π, pre-computes the key image basepoints for each ring member, H` := Hki(P`),

computes the key image J =
∑
j Jj =

∑
j x
∗
jHπ, assembles the modified message m∗ = (m, P , J, aux),

and computes M = Hmsg(m∗). The remainder is run collaboratively:

Commit: Each signer, say with index j such that 1 ≤ j ≤ n, does the following:

(a) Selects a random scalar uj . Compute the points Uj = ujG and Vj = ujHπ and select random

scalars sπ+1,j , sπ+2,j , . . . , sπ−1,j .

(b) Set datj := (Uj , Vj , {s`,j}` 6=π).

8

(c) Compute commitment comj = Hcom(datj).

(d) Send comj to all other signers.

Reveal: After receiving each comj from the rest of the coalition, each signer indexed as before does

the following:

(a) Send datj to all other signers.

(b) After all datj′ have been received, verify that Hcom(datj′) = comj′ for each j 6= j′. If not all

commitments open appropriately, output ⊥Sign and terminate.

Offline signature pre-processing Each signer indexed as before does the following:

(a) Compute Lπ =
∑
j Uj , Rπ =

∑
j Vj .

(b) Compute each s` =
∑
j s`,j for each 1 ≤ ` ≤ r such that ` 6= π.

(c) For each ` = π, π + 1, . . . , π − 1 (where we re-assign overflow indices by mapping r + 1 7→ 1,

r + 2 7→ 2, and so on), compute the following.

c`+1 =Hsig(M,P`, L`, R`)

L`+1 =s`+1G+ c`+1P`+1

R`+1 =s`+1H`+1 + c`+1J

(d) Store the pre-processed signature (uj ,m
∗, c1, cπ, {s`}` 6=π) for later.

Signature completion To finish signing with (uj ,m
∗, c1, cπ, {s`}` 6=π), each signer indexed as before

does the following:

(a) Compute sπ,j = uj − cπx∗j .
(b) Send sπ,j to the other signers.

(c) After receiving all {sπ,j′}j 6=j′ , compute sπ =
∑
j sπ,j .

(d) Output (m∗, σ) where σ = (c1, s) where s = (s1, s2, . . . , sr).

3. Ver takes as input some (m∗, σ).

(a) Parse m∗ = (m, P , J, aux) and σ = (c1, s).

(b) For ` = 1, 2, . . . , r−1, compute L` = s`G+c`P`, R` = s`H`+c`J , and c`+1 = Hsig(M,P`, L`, R`).

(c) Compute c′1 = Hsig(M,Pr, Lr, Rr).

(d) Output 1 if c′1 = c1 and 0 otherwise.

4. Link operates just like a Back LSAG signature: check if key images J match.

5 Unforgeability and thring signatures

5.1 Defining a forgery

What, exactly, does it mean to be a forger, or to present a forgery? A forgery should be some (m∗, σ) such

that σ is not an output in the transcript of queries made by A to SO and Ver(m∗, σ) = 1. However, this is

not enough. Indeed, if none of the keys in P are aggregated, a forgery of our scheme reduces to forgery of the

underlying LSAG scheme; without loss of generality, a successful forgery should have at least one aggregate

key in P . Additionally, even if some key is aggregate, the forger could simply place their own key in P along

with the aggregate key. So, if the forger knows the discrete logarithm of any public key in some ring P , then

9

the forger can simply produce an honest signature with P , which cannot count as a forgery. Without loss of

generality, all ring members must either be an honest key (i.e. a discrete log challenge) or be a child of an

honest key. Since the most powerful adversary has corrupted all keys except one, we assume only one target

honest key Xh.

Hence, we modify the usual unforgeability game: given Xh and ring P , a forgery is only successful if

it comes equipped with evidence that every ring member is either Xh itself or a child of Xh, and that P

has least one child of Xh. The forger can simply produce evidence of these relationships by presenting the

aggregating sets
{
X(`)

}
`∈[r]

such that Xh ∈ X(`) and P` = Φ(X(`)) for each 1 ≤ ` ≤ r. In the following,

a forger is a PPT algorithm A that takes as input some Xh and produces as output a distinguished failure

symbol ⊥A or a successful forgery outA = forg = (m∗, σ,
{
X(`)

}
`∈[r]

).

Definition 5.1.1 (Existential Unforgeability for LSTAGs). We say a PPT algorithm A is a (t, ε, q, n)-forger

if, within time at most t and with at most q oracle queries, A can succeed at the following game with

probability at least ε.

1. The challenger picks an honest key pair (xh, Xh)← KeyGen and sends the public key Xh to A.

2. A can generate keys, can aggregate any group elements with Xh, and is granted access to a signing

oracle SO and the random oracles Hagg, Hsig, Hcom, Hmsg, and Hki. A can perform any of these in

any order, adaptively responding to previous results.

3. A outputs some (m∗, σ,
{
X(`)

}r
`=1

).

4. A wins if all the following conditions are satisfied.

Correct: For each `, P` = Φ(X(`)).

Bounded: For each `, 1 ≤
∣∣∣X(`)

∣∣∣ ≤ n.

Honest parent: For each `, Xh ∈ X(`).

Aggregated: For some `,
∣∣∣X(`)

∣∣∣ ≥ 2 (so at least one key is aggregated).

Non-trivial: σ is not an output in the transcript between A and SO; and of course

Valid: Ver(m∗, σ) = 1.

While it seems not realistic for the adversary to present evidence of their forgery, we note that if a forger

is placed in a black box by some master algorithm, the key aggregation queries made by the forger must be

simulated by or also made by the master algorithm. Hence, evidence of these relationships are extractable

from the transcript resulting any successful forgery.

5.2 Strategy for proving unforgeability

Suppose B is a meta-reduction of A that produces, for some fixed message m, four forged signatures σ,

σ′, σ′′, σ′′′ with rings P , P ′, P ′′, P ′′′ with family histories X =
{
X(`)

}
`∈[r]

, X ′ =
{

(X(`))′
}
`∈[r′]

, X ′′ ={
(X(`))′′

}
`∈[r′′]

, and X ′′′ =
{

(X(`))′′′
}
`∈[r′′′]

. Suppose furthermore that B can extract from the oracles

made by A a distinguished index ` such that

L` = L′`, L
′′
` = L′′′` , P` = P ′` , P

′′
` = P ′′′` .

10

Then B can compute the discrete logarithm of P` as (c` − c′`)−1(s′` − s`) and the discrete logarithm of P ′′`
as (c′′` − c′′′`)−1(s′′′` − s′′`). However, the keys P` = P ′` are aggregated from X and X ′, respectively. Due to

this, we can write P` = P ′` = αXh + Z for some α and for some Z using the key aggregation function Φ.

Similarly P ′′` = P ′′′` and can be written as α′Xh + Z ′ for some α′, Z ′.

If B can ensure that Z = Z ′ and α 6= α′, then P` − P ′′` = (α − α′)Xh and so B can obtain the discrete

logarithm of Xh:

xh = (α− α′)−1

(
s′` − s`
c` − c′`

− s′′′` − s′′`
c′′` − c′′′`

.

)
Hence, to demonstrate the absurdity of the existence of a forger A, it is sufficient to demonstrate the

existence of a meta-reduction that can produce four transcripts such that the following is extractable from

those transcripts: an index 1 ≤ `, some public keys (P`, P
′
` , P

′′
` , P

′′′
` , L`, L

′
`, L
′′
` , L

′′′
` , Z, Z

′), and some scalars

(s`, s
′
`, s
′′
` , s
′′′
` , c`, c

′
`, c
′′
` , c
′′′
` , α, α

′) such that

L` =s`G+ c`P` L′` =s′`G+ c′`P
′
`

L′′` =s′′`G+ c′′`P
′′
` L′′′` =s′′′` G+ c′′′` P

′′′
`

L` =L′` L′′` =L′′′`

P` =P ′` P ′′` =P ′′′`

P` =αXh + Z P ′′` =α′Xh + Z ′

and such that c′′` 6= c′′′` , c` 6= c′`, and α 6= α′. We say this is the system of forgery-to-discrete-log equations

and inequalities.

We do this in Appendix A with careful construction of oracles and by forking twice: the first time upon

the very first signature verification query of the form H(M,P`, L`, R`), ensuring that L` = L′` and L′′` = L′′′` ,

and the second time upon the computation of key aggregation coefficients, ensuring that Z` = Z ′` = Z and

α 6= α′.

6 Use and abuse of applications and implementations

In this section, we discuss some implementation considerations for thring signature schemes, their extensions,

and their applications in ring confidential transactions.

6.1 Danger in non-random or repeated signing

The protocol is dangerous if data is not randomly generated for each attempted signature or if more than one

signature per key is ever published. If the same signature data uj,π is used by a participating member twice,

they risk revealing their private keys: the equalities s = u − cb∗ and s′ = u − c′b∗ can be used to compute

b∗ = s−s′
c′−c . Hence, any non-random method of selecting signing data should never be used. Similarly, two

signatures with the same session key should never be provided, as the discrete logarithm of the signing key

can be extracted.

6.2 Group property considerations

Also note that it is perfectly safe to use a group G with composite order instead of prime order. However, we

must restrict our choices of public key to a specific prime-order subgroup of G. Using the so-called Ed25519

curve (which is a twisted Edwards curve presented in [6] that is birationally equivalent to the so-called

11

Curve25519 curve presented in [5]), there are some implementation risks in selecting a public key outside of

the prime-order subgroup.

Indeed, the prime-order subgroup has cofactor 8, introducing the possibility of malleability exploitations.

To prevent these exploitations, all implementations with this curve require checking that group elements for

use as public keys lie on the prime order subgroup by checking their order. Certainly any private key x ∈ Zp

will have a corresponding public key X = xG on this prime-order subgroup since G is a generator of that

subgroup. On the other hand, selecting a public key at random does not guarantee a discrete logarithm

pre-image with respect to G. We must modify the hash-to-point function Hki to have a codomain equal to

the prime-order subgroup. This means multiplying public keys without corresponding private keys by the

cofactor 8 when using the Ed25519 or Curve25519 curves.

6.3 View key extension and thring confidential transactions

Among other reasons, our thring signatures are not directly comparable to signatures employed in digital

currencies like the MLSAG signatures used in protocols like Cryptonote. Indeed, Cryptonote user keys come

in pairs with a view key and a spend key, and signatures are computed with one-time keys derived from

these. The thresholdizing heuristic described in Section 3.2 extends naturally to a system with this one-time

key extension, but our proofs of security properties do not immediately apply to these extensions without

some further work.Establishing the unforgeability of an implementation of LSTAG thring signatures using

Cryptonote-styled one-time keys with a view key extension remains an open task.

One model that may be helpful in proving the unforgeability of a view key extension of our implementation

below is for collaborators to each receive a common shared secret y = ash and use keys x = (x1, . . . , xn) to

compute a shared key of the form Y + Φ(X). Rogue-key or key cancellation attacks using this method may

be mitigated by careful construction of y. For example, in Cryptonote protocols, tampering with Y requires

tampering with the hash digest of a key from a Diffie-Hellman exchange.

Similarly, our heuristic also extends naturally to the MLSAG setting, but our security proofs again do not

immediately apply without some further work. We briefly describe ring confidential transactions in Monero

and a thresholdized extension to thring confidential transactions.

MLSAG signatures are constructed from vectors of keys of the form (Hsess(aT)G+B, PedCom(v, r)) where

PedCom is a Pedersen commitment scheme, v is a transaction amount, and r is a private amount-commitment

key. MLSAG signatures, by construction, are multisignatures since they use multiple keys to sign a message

but they are not collaboratively computed. They produce a signature size that is independent of the number

of signers, but MLSAG signatures still reveal the number of signing keys. With a list of signing public keys

P = (P1, . . . , Pn) interpreted as a vector, the signer (or signers) randomly selects similar vectors from the

blockchain to construct a ring of such key vectors P̃ , packing P into the πth column for a secret π.

P̃ =

P1,1 P1,2 · · · P1,r

P2,1 P2,2 · · · P2,r

...
...

Pn,1 Pn,2 · · · Pn,r

 = (P 1, . . . , P r)

where each P ` = {Pj,`}j∈[n]. For each j = 1, 2, . . . , n and ` = 1, 2, . . . , r, with the entry Pj,` in P̃ we

compute Hj,` := Hki(Pj,`). For each component pj ∈ p, the signer computes key image Jj = pjHki(pjG).

The signer selects a vector of random scalars u = (u1, . . . , un) ∈ Znp for the πth column and, for each ` 6= π,

the signer selects a vector of random scalars s` = (s1,`, s2,`, . . . , sn,`). Now, for each signing key Pj,`, the

12

signer computes the pair of points and the commitment

Lj,` =sj,`G+ c`Pj,`, Rj,` =sj,`Hj,` + c`Jj , c`+1 =Hsig

(
M,
{

(Lj` , R
j
`)
}n
j=1

)
.

Once each commitment has been computed, the signer computes each sj,π = uj − cπpj as usual, assembles

sπ = (sj,π)j∈[n], and the MLSAG signature is then σ = (c1, (s`)`∈[r]), which is verified similarly to LSAG

signatures.

Initially, this scheme may seem to not be particularly ambiguous with respect to signer identification.

Anyone can discern that one of these columns contains all the signing keys. That is to say, it is not possible

that p2,2 and p1,1 may both be the true keys used in this ring signature. Rather than a drawback, this is how

Monero links signing keys with transaction amounts. In Monero, the first row of keys in P̃ are signing keys,

the second row consists of the differences between Pedersen commitments to transaction input amounts and

output amounts. Signing with this matrix means both knowing the private signing key for the special index

and being able to open the amount commitment at that index to zero.

To see how our thresholdizing heuristic extends naturally to the MLSAG setting, consider the following.

For a collaborating coalition of signers, presume that each participating signer has a share of a key, which

are aggregated in the Musig style, and each participant contributes some random scalars to be summed for

uj , sj,`, etc, in a commit-and-reveal stage. Formally establishing the unforgeability of such an implemen-

tation of MLSTAG thring confidential transactions using Cryptonote-styled one-time keys with a view key

extension also remains an open task. We leave the task of presenting more general formal definitions and

implementations of thring confidential transactions and their security properties for future works, such as

the upcoming work of [11].

6.3.1 Extending to m-of-n

Section 3.2 presents a simple 2-of-2 example, which extends naturally to n-of-n. With a Diffie-Hellman

exchange, we may extend the above approach to an (n− 1)-of-n threshold signature scheme in the following

way: participants share their Bj with each other and compute pairwise shared secrets zi,j = Hagg(biBj).

There are n(n−1)
2 distinct shared secrets split across n parties such that any n − 1 members can regain all

of the secrets. Hence, an (n − 1)-of-n scheme may be implemented as an n(n−1)
2 -of-n(n−1)

2 scheme. More

general approaches for m-of-n are obviously available, and we go no further describing them here.

6.4 Cross-chain, confidential, spender-ambiguous atomic swaps

Simple cross-chain atomic swaps using thring signatures are possible. If all goes well, the swap goes like

this: Alice sends x AliceCoins to the 2-of-2 key on the AliceCoin chain, Bob sends y BobCoins to the 2-of-2

key on the BobCoin chain, and once both parties are satisfied, they can collaborate to claim their funds. Of

course, we cannot assume all goes well; as described in [2], refund transactions allow for semi-honest parties

to halt the process in an adversarial environment. All that remains to complete a spender-ambiguous model

of the cross-chain atomic swaps from [2] for a digital currency using confidential transactions is to formalize

refund transaction capabilities for that currency (c.f. [17]).

References

[1] A. Back. Ring signature efficiency. https://bitcointalk.org/index.php?topic=\%20972541.

msg10619684#msg10619684, 2015. Accessed: 16-03-2018.

13

[2] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, Andrew Miller, An-

drew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain innovations with pegged

sidechains. URL: http://www. opensciencereview. com/papers/123/enablingblockchain-innovations-

with-pegged-sidechains, 2014.

[3] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general forking

lemma. In Proceedings of the 13th ACM conference on Computer and communications security, pages

390–399. ACM, 2006.

[4] Adam Bender, Jonathan Katz, and Ruggero Morselli. Ring signatures: Stronger definitions, and con-

structions without random oracles. In TCC, volume 6, pages 60–79. Springer, 2006.

[5] Daniel J Bernstein. Curve25519: new Diffie-Hellman speed records. In International Workshop on

Public Key Cryptography, pages 207–228. Springer, 2006.

[6] Daniel J Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security

signatures. Journal of Cryptographic Engineering, 2(2):77–89, 2012.

[7] Dan Boneh, Manu Drijvers, and Gregory Neven. Compact multi-signatures for smaller blockchains.

Cryptology ePrint Archive, Report 1990/001, 2018. https://eprint.iacr.org/2018/483.

[8] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter MR Rasmussen, and

Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryption. Cryptology ePrint

Archive, Report 1990/001, 2017. https://eprint.iacr.org/2017/956.pdf.

[9] Emmanuel Bresson, Jacques Stern, and Michael Szydlo. Threshold ring signatures and applications to

ad-hoc groups. In Annual International Cryptology Conference, pages 465–480. Springer, 2002.

[10] Manu Drijvers, Kasra Edalatnejad, Bryan Ford, and Gregory Neven. Okamoto beats Schnorr: On

the provable security of multi-signatures. Technical report, IACR Cryptology ePrint Archive, Report

2018/417, 2018. Available at http://eprint. iacr. org/2018/417, 2018.

[11] Russel WF Lai, Viktoria Ronge, Tim Ruffing, Dominique Schröder, Sri Aravinda Krishnan Thyagarajan,

and Jiafan Wang. Foundations of ring confidential transactions. In prep., 2018.

[12] Joseph K Liu, Victor K Wei, and Duncan S Wong. A separable threshold ring signature scheme. In

International Conference on Information Security and Cryptology, pages 12–26. Springer, 2003.

[13] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous anonymous group signature

for ad hoc groups. In ACISP, volume 4, pages 325–335. Springer, 2004.

[14] Gregory Maxwell. Confidential transactions. URL: https://people. xiph. org/˜ greg/confidential values.

txt (Accessed 08/24/2018), 2015.

[15] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple Schnorr multi-signatures

with applications to Bitcoin. Cryptology ePrint Archive, Report 1990/001, 2018. https://eprint.

iacr.org/2018/068.pdf.

[16] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin: Anonymous distributed

e-cash from bitcoin. In Security and Privacy (SP), 2013 IEEE Symposium on, pages 397–411. IEEE,

2013.

14

[17] Sarang Noether and BG Goodell. Dual-output ring signatures: Spender-ambiguous cross-chain confi-

dential atomic swaps. In prep., 2018.

[18] Shen Noether, Adam Mackenzie, et al. Ring confidential transactions. Ledger, 1:1–18, 2016.

[19] Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature

schemes. In Annual International Cryptology Conference, pages 31–53. Springer, 1992.

[20] Haifeng Qian and Shouhuai Xu. Non-interactive multisignatures in the plain public-key model with

efficient verification. Information Processing Letters, 111(2):82–89, 2010.

[21] Thomas Ristenpart and Scott Yilek. The power of proofs-of-possession: Securing multiparty signatures

against rogue-key attacks. In Annual International Conference on the Theory and Applications of

Cryptographic Techniques, pages 228–245. Springer, 2007.

[22] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology, 4(3):161–174,

1991.

[23] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K Liu, and Duncan S Wong.

Separable linkable threshold ring signatures. In Indocrypt, volume 3348, pages 384–398. Springer, 2004.

A Security

In this Appendix, we prove the following theorem based on the game of Definition 5.1.1. In Appendix B,

we discuss some other security properties of thring signatures and their LSTAG implementation. In A.1

we detail the signing oracle of Definition 5.1.1 and its simulation. In A.2, we review the rewind-on-success

forking lemma. In A.3, we discuss the first reduction of the forging adversary and establish some probability

bounds. In A.4, we explain our twice-forking approach, concluding the proof of the following theorem.

Theorem A.0.1. Let A be a (t, ε, q, n)-forger for some non-negligible ε. There exists some t′ > 0 and an

algorithm B that is a (t+ t′, ε′, q)-solver of the discrete logarithm problem for some non-negligible ε′.

A.1 The signing oracle

In this section, we explain the signing oracle for use in the unforgeability game of Definition 5.1.1.

The signing oracle in the unforgeability game captures the situation where an adversary A can persuade

an honest party to sign some documents before attempting a forgery. In the multisignature case, we must

also capture the implications of a malicious A persuading an honest party to collaborate to construct some

multisignatures on similar documents. Due to this collaboration, A has some control over signing data so

SO must be interactive. In an honest collaboration, A would also know which index π corresponds with

the true signer, so we allow the signing oracle to be queried with the special signing index π. Moreover, a

reduction A′ of A must simulate interactions between A and any oracles, in particular the signing oracle.

SO takes as input some inpSO = (m, P , π,
{
X(`)

}
`∈[r]

) where m ∈ {0, 1}∗ is a message, P is a ring of

public keys, π is a special index, and
{
X(`)

}
`∈[r]

is a a multi-set of multi-sets of public keys. SO and A
interact. SO outputs a distinguished failure symbol ⊥SO or A successfully simulates collaborating with an

honest party to obtain a multi-signature.

The Oracle: A queries SO with some

(
M,P , π,

{
X(`)

}
`∈[r]

)
.

15

1. SO checks if, for each `, P` = Φ(X(`)) and checks if Xh ∈ X(`) and checks that at least one P` is

aggregated. If not, SO outputs ⊥SO and terminates.

2. Otherwise, SO selects signing data dat1 = (U1, V1, {s1,`} 6̀=π), computes the commitment com1 ←
Hcom(dat1) and send com1 to A.

3. After A responds with a set {comj}nj=2, SO sends dat1 to A.

4. After A responds with {datj}nj=2, SO checks that comj = Hcom(datj) for each j. If not, SO
outputs ⊥SO and terminates.

5. SO completes the off-line signature pre-processing stage, solves for sπ,j , and sends sπ,j to A.

The symbol ⊥SO only indicates a failed simulation of SO. If A misbehaves but SO is successfully

simulated, then it is possible that SO successfully simulates a bad execution of Sign. Since SO was successful,

this does not result in ⊥SO but results in an invalid signature or the failure symbol ⊥Sign from Sign.

A.2 Rewind-on-success forking lemma

In this section, we explain the double forking technique and present the general forking lemma. Recall that,

to prove unforgeability of our scheme, it is sufficient to prove that a forger A with non-negligible advantage

at the existential unforgeability game can be reduced to some B that produces four forgeries as described

above. As usual, we use reductions and meta-reductions of A with a general forking lemma to complete our

task. We denote a reduction of A with black-box access to A as (A′)A, and we denote the process of taking

reductions with the notation A A′. Our proof strategy, roughly following the strategy from [15], can be

visualized this way:

A A′ forkA
′
 A′′ forkA

′′
 B.

That is to say: our strategy is to prove that if a forger A exists, then there exists a reduction A′ of A
that satisfies the hypotheses of Lemma A.2.1, which can be forked. The forking algorithm can be put in a

wrapper A′′, which can be again forked. If A′ and A′′ have non-negligible acceptance probability, so does

forkA
′′
, which we reduce to some discrete logarithm solver B.

Lemma A.2.1 (General Forking Lemma). Let q, η ≥ 1. Let P be any PPT algorithm which takes as input

some inpP = (inp, h) where h = (h1, . . . , hq) is a sequence of oracle query responses (η-bit strings) and

returns as output outP either a distinguished failure symbol ⊥ or a pair (i, out) where i ∈ [q] and out is

some output. Let accP denote the probability that P does not output ⊥ (where this probability is taken

over all random coins of P, the distribution of inp, all choices h).

There exists an algorithm, forkP that takes as input some inpforkP = inpP and produces as output

outforkP either a distinguished failure symbol ⊥ or a pair of pairs ((i, out), (i′, out′)), where (i, out) and

(i′, out′) are outputs from P such that i = i′. Furthermore, the accepting probability of forkP is bounded

from below such that

accforkP ≥ accP

(
accP

q
− 1

2η

)
.

We refer the reader to [3] for a proof.

Algorithm forkP : Let η > 1 be a security parameter, q > 1 be a polynomial function of η. Let P any

PPT algorithm satisfying the hypotheses of Lemma A.2.1.

The algorithm forkP produces as output a distinguished failure symbol outforkP = ⊥ or some

outforkP = (i′, out′) where j is an index in [q] and out′ = (out, out′′, aux) such that out, out′′

are two outputs from P.

16

1. Pick random coins ρ = ρP for P and select h← ({0, 1}η)q.

2. Execute outP ← P(inpP , h; ρ).

3. If outP = ⊥P , output ⊥forkP and terminate. Otherwise, outP = (i, out) for some out.

4. Pick new h′ ← ({0, 1}η)q.

5. Glue the oracle query sequences together: h∗ := (h1, . . . , hi−1, h
′
i, . . . , h

′
q).

6. Execute out′′P ← P(inpP , h
∗; ρ).

7. If out′′P = ⊥P , output ⊥forkP and terminate. Otherwise, out′′P = (i′′, out′′).

8. If i 6= i′′ or i = i′′ but hi = h′i, output ⊥forkP and terminate.

9. Otherwise, select some auxiliary data aux, assemble out′ = (out, out′′, aux), output (i, out′), and

terminate.

If P takes as input several sequences of oracle queries together, we can parse these as to be included in

inp ∈ inpP . If inpP has some other sequence h∗ of oracle queries packed into it like this, then forkP

can be forked again in a chain. In the next section, we describe each algorithm in the chain of reductions

comprising our proof strategy A A′ forkA
′
 A′′ forkA

′′
 B, proving their existence and the

non-negligibility of their accepting probability as we go.

A.3 Reducing A

In this section, we begin our forking journey by constructing the first reduction A′ of A in the chain

of reductions. We explain how A′ simulates each oracle, and we establish some lemmata regarding the

accepting probability of A′.
We construct a reduction A′ of A compatible by Lemma A.2.1, which applies to an algorithm P that

takes as input some inpP = (inp, h). A′ takes as input inpA′ = (inp, hsig). However, A′ must simulate

both Hsig and Hagg queries, so we define inp := (inpA, hagg). That is to say, A′ takes as input inpA′ =

(inpP , hagg) =
(
(Xh, hagg), hsig

)
.

A′ responds to oracle queries with hagg and hsig as described below. A′ augments the output of A,

producing as output ⊥ when A fails. On the other hand, if A produces a non-⊥ output, say forg =(
m∗, σ,

{
X(`)

}
`

)
, A′ repeats this in its output but augments this with some transcript information, outA′ =

(isig, out
∗) where out∗ = (forg, isig, hsig,isig , `sig, πsig, iagg, hagg,iagg , a) for some signature and aggregation

query indices isig, iagg and responses hsig,isig , hagg,iagg , some ring indices `sig, πsig, and a list of coefficients a

extracted from the transcript in the following way:

1. (isig, `sig) are defined such that the response to first query made byA toHsig to compute any verification

equation used in the forgery is the ithsig such query and takes place for the `thsig ring member, i.e.

hsig,isig = c`sig+1 = Hsig(M,P`sig , L`sig , R`sig) for some index `; and

2. πsig is defined such that the response to the final query made by A to Hsig to compute any verification

equation used in the forgery is used in the πthsig signature challenge, i.e. the final signature challenge to

be computed in the transcript is cπsig
= Hsig(M,Pπsig−1, Lπsig−1, Rπsig−1); and

3. iagg is the index of the first aggregation query made for any member of X(`sig), i.e. the aggregation

coefficient on Xh in X(`) is hagg,iagg ; and

4. a contains the aggregation coefficients of all adversarially selected keys in X(`sig) (arranged in some

canonical manner).

17

Lemma A.3.1. Assume A makes at most q random oracle queries and does not output ⊥A. Every query

made to Hsig for the verification equations is made by A before terminating except with a probability

bounded above by 1− (1− (p− q)−1)r (conditioned upon the event that A does not output ⊥A).

Proof. The event that A does not query Hsig for some verification query requires that A guess the output of

Hsig for some query by flipping coins. This occurs with probability at most (p− q)−1 (the result must avoid

the queries already made). The probability of successfully doing this even once for any of the r verification

queries is therefore 1 − (1 − (p − q)−1)r. This is the upper bound on the probability that A can get away

with flipping coins instead of querying for a verification equation.

As a corollary to this lemma, A′ can find isig, hsig,isig , `sig, and πsig easily.

Lemma A.3.2. Assume Amakes at most q random oracle queries and does not output ⊥. Every query made

to Hagg for every aggregation coefficient for Xh is made by A before terminating, except with a probability

bounded above by 1− (1− (p− q)−1)nr (conditioned upon the event that A does not output ⊥A).

Proof. The event that A does not make one of these queries is requires that A guess the output of Hagg.

With r ring members, each with some contributing keys X(`) such that each
∣∣∣X(`)

∣∣∣ ≤ n has at most nr such

queries, each with a successful guess probability of (p− q)−1. The probability of doing this successfully even

once in a trial of nr attempts is therefore 1− (1− (p− q)−1)nr.

As a corollary, A′ can extract iagg and hagg,iagg easily.

Lemma A.3.3. Assume A is a (t, ε, n, q)-forger. Let E be the event that A does not output ⊥. In E, for

each 1 ≤ ` ≤ r, the query made to Hsig for the verification equation challenge c`+1 is made after the query

to Hagg for the aggregation coefficient on Xh in the associated X(`), except with probability bounded above

by 1− (1− (p− q)−1)r.

Proof. Since Φ(X(`)) = P` is part of the pre-image for c`+1, the probability that A can compute c`+1 before

querying to compute P` (and assuming all queries are made except this final one) is at most (p− q)−1, and

there are at most r such queries relevant to the forgery.

These lemmata and corollaries demonstrate that all verification queries appear, and each of them appears

after the aggregation coefficients have been computed. With these lemmata at hand, we can describe A′. A′

places A in a black box, simulating all oracle queries made by A. A′ keeps internal tables denoted with Tsig,

Tagg and a counter denoted ctr to keep track of queries made to maintain internal consistency and track

oracle query indices.

Algorithm A′: A′ takes as input inpA′ = ((Xh, hagg), hsig). A′ has black-box access to A, simulating oracle

queries as described below and produces as output either a distinguished failure symbol ⊥ or some

(i, out).

1. A′ selects random coins ρ = ρA, sets ctr := 0, and sets inpA := {Xh}.

2. A′ executes A(inpA; ρA), answering oracle queries made by A as described below.

3. If A outputs ⊥A, A′ outputs ⊥A′ and terminates.

4. Otherwise, A outputs a forgery forg = (m∗, σ,
{
X(`)

}
`
).

5. A′ finds all verification queries in the transcript and finds the following:

(a) the query index isig of the first verification equation used in the forgery, and

18

(b) the response hsig,isig to that first verification query, and

(c) the ring index `sig of the input to that first verification query (satisfying the verification

equation c`sig+1 = H(M,P`sig , L`sig , R`sig) = hsig,isig), and

(d) the response hsig,i′sig
to the final verification query, and

(e) the ring index πsig−1 of the input to this query, which satisfies a similar verification equation

cπsig
= H(M,Pπsig−1, Lπsig−1, Rπsig−1), and

(f) the query index iagg of the first aggregation query for any member of X(`sig), and

(g) the response hagg,iagg to that query, and lastly

(h) A′ finds all other aggregation coefficients for members of X(`sig) in Tagg, say a. See description

of Hagg oracle for more information.

6. A′ outputs outA′ = (isig, (forg, isig, hsig,isig , `sig, πsig, iagg, hagg,iagg , a)).

Simulating Hcom: To simulate queries of the form Hcom(inp), A′ keeps track of an internal table

Tcom. A′ checks if Tcom[inp] is empty. If so, a random out
$← {0, 1}η is selected and stored

Tcom[inp]← out. In either case, Tcom[inp] is sent to A.

Simulating Hki: To simulate queries made by A of the form Hki(inp), A′ keeps track of an internal

table Tki. A′ checks if Tki[inp] is empty. If so, a random point Y ′ ∈ G is selected and stored

Tki[inp]← Y ′. In either case, Tki[inp] is sent to A.

Simulating Hagg: A′ tracks aggregation queries carefully and always ensures that the aggregation

coefficient for Xh is selected after all other coefficients.

1. A queries Hagg with inp.

2. A′ checks if Tagg[inp] is undefined. If so, A does the following:

(a) A′ checks if inp can be parsed as some (Y,X). If not, A′ picks a random entry Tagg[inp]
$←

Zp.

(b) Otherwise, A′ parses inp = (Y,X) and checks if Xh ∈ X. If not, then for each Y ′ ∈ X,

A′ picks a random entry Tagg[Y
′, X]

$← Zp.

(c) Otherwise, inp = (Y,X) for some Y ∈ X such thatXh ∈ X and yet Tagg[inp] is undefined.

A′ checks if Tagg[Xh, X] is defined. If so, A′ outputs ⊥agg and terminates

(d) Otherwise, for each Y ′ ∈ X \{Xh} such that Tagg[Y ′, X] is undefined, A′ selects a random

entry Tagg[Y
′, X]

$← Zp.

(e) After all entries of X except Xh have an entry in Tagg, A′ increments ctragg and stores

Tagg[Xh, X]← hagg,ctragg .

3. A′ outputs Tagg[inp].

Note that A′ responds with ⊥agg if and only if Tagg[Xh, X] is defined but some Y ∈ X has

Tagg[Y,X] defined. If A′ follows the protocol as described, this never happens. In all other cases,

the aggregation coefficient for Xh is decided after all other aggregation coefficients have been

decided. This is important to our proof of unforgeability.

Simulating Hsig: To simulate queries made by A for signing, Hsig(inp), A′ checks if Tsig[inp] is

defined. If not, A′ checks if inp can be parsed as inp = (M,P,U, V) for some M and group points

P,U, V . If not, Tsig[inp]
$← {0, 1}η is selected at random. Otherwise, ctrsig is incremented and

Tsig[M,P,U, V]← hsig,ctrsig is stored. Either way, A′ sends Tsig[inp] to A.

19

Simulating SO: For notational simplicity, SO uses notations assuming it is the first member of the

coalition to begin signing (with index j = 1 in the coalition). A′ simulates SO in the following

way:

1. A queries SO with inpSO.

2. After receiving the query, A′ parses inp as

(
M,P , π,

{
X(`)

}
1≤`≤r

)
such that

∣∣∣X(`)
∣∣∣ ≥ 2 for

some ` and, for each `,
∣∣∣X(`)

∣∣∣ ≤ n, Xh ∈ X(`), and P` ∈ P is derived from the corresponding

X(`). If A′ cannot parse this way, A′ sends ⊥SO to A indicate the query is rejected and halts

simulating SO.

3. Otherwise, A′ selects signing data dat1 as in step 2 in Section A.1, computes the commitment

com1, and send com1 to A in the following way:

(a) A′ increments ctr and picks the critical commitment cπ ← hsig,ctrsig .

(b) A′ selects a random set of signing data {s1,`}`∈[r] (including the index ` = π).

(c) A′ computes L1,π = s1,πG+cπPπ and R1,π = s1,πHπ +cπJ , assembles the signature data

dat1 := (L1,π, R1,π, {s1,`}`∈[r], 6̀=π), and selects a random com1
$← {0, 1}η.

(d) If Tcom[dat1] is defined, A′ halts simulating SO, outputs ⊥1 to indicate that some dat1

has already been used, and terminate.

(e) Otherwise, A′ simulates a query of Hcom by setting Tcom [dat1]← com1, sends com1 to A.

4. After A responds with commitments com = {comj}j∈[n],j 6=1, A′ does some back-patching and

then sends dat1 to A.

(a) For each j > 1, A′ searches Tcom for any dat such that Tcom [dat] = comj .

(b) If, for any j, more than one dat is found, A′ halts simulation of SO, outputs ⊥2, and

terminates.

(c) If, for any j, no such dat is found, then A′ sets alert1 ← true.

(d) Otherwise, exactly one dat = datj is found in Tcom for each comj . If any datj cannot be

parsed as (Uj , Vj , {sj,`}` 6=π), A′ sets alert2 ← true.

(e) Otherwise, exactly one datj is found in Tcom for each comj and can be parsed into the

tuple (Uj , Vj , {sj,`}). After parsing each datj , A′ does the following:

i. A′ computes U =
∑
j Uj , V =

∑
j Vj , and s` =

∑
j sj,` for each ` 6= π.

ii. A′ checks if (M,P`, U, V) appears in Tsig. If so, A′ halts simulating SO, outputs ⊥3,

and terminates.

iii. Otherwise, A′ increments ctrsig, sets cπ+1 ← hsig,ctrsig , and stores Tsig[M,P`, U, V]←
cπ+1.

iv. For each ` = π+ 1, π+ 2, . . . , π− 2, A′ computes L` = s`G+ c`P` and R` = s`H` + c`J

and checks if (M,P`, L`, R`) appears in Tsig. If so, A′ halts simulating SO, outputs

⊥3, and terminates.

v. Otherwise, A′ increments ctrsig, sets c`+1 ← hsig,ctrsig , stores

Tsig[M,P`, L`, R`]← c`+1

and then moves to the next `.

vi. A′ checks that Tsig [M,Pπ−1, Lπ−1, Rπ−1] is empty. If not, A′ halts simulating SO,

outputs ⊥3, and terminates.

20

vii. Otherwise, Tsig [M, sπ−1G+ cπ−1Pπ−1, sπ−1Hπ−1 + cπ−1J]← cπ.

(f) A′ sends dat1 to A.

5. After A responds with dat′ =
{
dat′j

}
j 6=1

, A′ checks comj = Tcom[dat
′
j] for each j. If any do

not match A′ sends ⊥SO to A indicating a successful simulation of a failed signing ceremony.

6. Otherwise, if alert1 = true or alert2 = true, A′ ⊥4 and terminates.

7. Otherwise, A′ sends s1,π to A, which is sufficient information for A to compute the rest of

the signature.

If the output is one of the symbols in {⊥1,⊥2,⊥3,⊥4}, then A′ actually terminates: these are the failure

symbols that indicate something strange is happening to the orders of oracle assignments while simulating

SO. This indicates failure of the signing oracle from a malformed query or some other bad ordering of events.

We shall prove these only occur with negligible probability.

Moreover, ⊥SO only appears if A queries SO with something beyond the scope of the unforgeability

game defined in Definition 5.1.1, or sent commitments that did not open correctly; A′ does not terminate

because these are successful simulations of a failed signing ceremony, not a failed simulation.

We investigate the acceptance probability of A′.

Lemma A.3.4. Let A be a (t, ε, q, n)-forger with SO and H access, and let A′ be any reduction of A that

simulates the oracle queries as described above, let t′ > 0, and let c > 0 be the amount of time required for

A′ to select a new Zp or G element at random. Then in time at most t + t′ and with probability at most

ε′ = ε1 + ε2 + ε3 + ε4, A′ terminates without outputting any ⊥i ∈ {⊥1,⊥2,⊥3,⊥4,⊥agg} where

ε1 =1−
∏

k∈[q−1]

(1− kp−r−1) ε2 =1−
∏

k∈[q−1]

(1− kp−1)

ε3 =1−
∏

k∈[q−1]

(1− kp−4) ε4 =1− exp(−−t
′(t′ − c)

2(p− q)c2
).

Proof. The failure symbols partition the event that A′ outputs some ⊥ and terminates, so the probability

of any ⊥ symbol appearing is exactly the sum of each individual one. That is to say, if E is the event that

A′ outputs some ⊥ and terminates and Ei is the event that A′ outputs ⊥i for some i ∈ {1, 2, 3, 4, agg}
and terminates, then we have εi = P[Ei] and, by the law of total probability P[E] = P[E | Eagg]P[Eagg] +∑
i∈[4] P[E | Ei]P[Ei].

Moreover, each conditional probability here is obviously 1 (the probability that A′ outputs some ⊥i given

the fact that A′ outputs ⊥3 is 1, for example) so we have the simple sum. Hence, bounding the acceptance

probability from below is equivalent to bounding each of the probabilities of each of these failure events from

above. We immediately simplify the analysis: P[Eagg] = 0 by construction.

To bound ε1: If A′, while simulating a query to SO for A, selects dat1 such that Tcom[dat1] is non-empty,

then ⊥1 is output. Hence, this symbol occurs if and only if A′ selects random signing data dat1 for

which an image under Hcom is already determined. A′ never selects the same random data twice by

specification of the SO simulation, so this implies that A queried Hcom with dat1 at some point in the

past and, moreover, A′ randomly discovered its pre-image. There are pr+1 choices of (U`, V`, {s`}); this

scenario is precisely the scenario of a usual birthday attack. Presuming that at most q such choices

are used in Hcom, the probability that A′ sees no collisions is exactly
∏
k∈[q−1](1− kp−r−1). Hence we

have

ε1 ≤ 1−
∏

k∈[q−1]

(1− kp−r−1).

21

To bound ε2: The failure symbol ⊥2 occurs if and only if at least two (U, V, {s`}) are found with table

entries Tcom[U, V, {s`}] = comj for the same comj . This implies a collision of the simulated random

oracle. We have

ε2 ≤ 1−
∏

k∈[q−1]

(1− kp−1).

To bound ε3: Let E be the event that A′, in simulating a query made to SO, checks Tsig and finding that

some query of the form (M,P`, U`, V`) has already been made, outputting ⊥3. This is also a birthday

attack: since M is output from Hmsg, we have p4 such possible choices, and we make up to q queries,

so the probability of seeing no collisions is exactly
∏
k∈[q−1](1− kp−4).

To bound ε4: The failure symbol ⊥4 is output only in the case that alert1 = true and the simulation has

almost come to an end. A′ only gets to this point when A misbehaves and sends a commitment comj in

the commit-and-reveal stage that has not yet been associated with any query of the form Hcom, and yet

still produced opening data {datj}j that pass the reveal phase: A guessed comj = Hmsg(datj) without

querying Hmsg. This, too, is a birthday attack. The probability that an attacker requires more than

k attempts at this before seeing the first collision is bounded from above by exp(−k(k−1)
2(p−q)). Assuming

each attempt takes constant time (say c units of time per attempt), since A′ is granted t′ > 0 time in

addition to the runtime of A, the probability that A′ outputs ⊥4 is at most 1− exp(−−t
′(t′−c)

2(p−q)c2).

Note that by rescaling time (t′, t) 7→ (t
′

c ,
t
c) we can rewrite ε4 = 1 − e−t′(t′−1)/(α(p−q)) for some α > 0.

Also note that each εi is negligible in p so the sum of these are negligible in p. Since A′ is compatible with

the hypotheses of Lemma A.2.1, we immediately obtain the following.

Corollary A.3.5. The algorithm forkA
′

and forkA
′′

have acceptance probabilities bounded from below:

accforkA′ ≥accA′
(
accA′

q
− 1

2η

)
accforkA′′ ≥accforkA′

(
accforkA′

q
− 1

2η

)
In the next section we describe forkA

′
and forkA

′′
.

A.4 Forking twice

In this section we apply the general forking lemma twice and obtain the punchline, a discrete logarithm

solver. We fork A′ in two stages. We first construct forkA
′

to take as input some inpforkA′ = (Xh, hagg),

selects some hsig at random, and executes A′ with input inpA′ = (Xh, hsig). If A′ outputs any failure symbol

⊥, then forkA
′

outputs ⊥forkA
′ and terminates.

Otherwise, A′ outputs some (isig, out) where out = (hagg,iagg , hsig,isig , a, forg). A second h∗sig is selected

at random, the sequences hsig and h∗sig are glued together as usual to get a sequence h′sig. A′ is run again

except with input (Xh, h
′
sig) in pursuit of a second success. If A′ outputs any failure symbol ⊥, then forkA

′

outputs ⊥forkA
′ and terminates.

Otherwise, A′ comes through with a second success, say (i∗sig, out
∗). If isig 6= i∗sig, forkA

′
outputs ⊥forkA

′

and terminates. Otherwise, forkA
′

outputs

outforkA′ = (isig, (i, out), (i∗, out∗)).

22

Algorithm forkA
′
: Takes as input inpforkA′ = (inp, hagg) = (Xh, hagg).

1. forkA
′

picks random coins for A′, selects hsig ← ({0, 1}η)q, assembles inpA′ = (inp, hagg).

2. forkA
′

runs A′ with inpA′ .

3. If A′ outputs ⊥A′ , forkA
′

outputs ⊥forkA
′ and terminates.

4. Otherwise, A′ outputs some outA′ = (isig, out) where

out = (isig, `sig, πsig, iagg, hsig,isig , hagg,iagg , a, forg).

5. forkA
′

selects h′sig ← ({0, 1}η)q, sets the gluing index as j = isig, and glues oracle query response

sequences together as usual

h′′sig = (hsig,1, hsig,2, . . . , hsig,j−1, h
′
sig,j , h

′
sig,j+1, . . .).

6. forkA
′

runs A′ with inp′A′ = (inp, h′′sig).

7. If A′ outputs ⊥, then forkA
′

outputs ⊥.

8. Otherwise, A′ outputs some out∗A′ = (i∗sig, out
∗) where

out∗ = (i∗sig, `
∗
sig, π

∗
sig, i

∗
agg, h

′′
sig,i∗sig

, hagg,i∗agg
, a∗, forg∗).

9. If isig 6= i∗sig, output ⊥forkA
′ and terminate.

10. Otherwise, output (isig, out
′) where out′ = (out, out∗).

The following lemma is obvious: aggregation coefficients for P` must be decided before the Hsig oracle is

queried with (M,P`, L`, R`) except with negligible probability. Hence, the queries that determines hagg,iagg

and h∗agg,i∗agg
are made before the fork, so they must be the same queries.

Lemma A.4.1. A successful output from forkA
′

has iagg = i∗agg except with negligible probability.

Proof. To guess the output ofHsig(M,P`, L`, R`) before learning P` occurs with probability at most (p−q)−1.

This is sufficient, but not necessary: it’s also possible that P` is learned without making aggregation coefficient

queries.

Hence, except with some probability at most (p − q)−1, P` is learned before this query is made. Con-

ditioning upon the event that A′ does learn P`, the probability that P` is guessed without computing any

aggregation coefficients is also at most (p− q)−1.

The probability that this ordering does not hold is bounded from above by (p−q)−1 +(1− (p−q)−1)(p−
q)−1 = (2−(p−q)−1)(p−q)−1). So the probability that this ordering does hold is at least (1−(p−q)−1)2.

The acceptance probability of forkA
′

is provided by the general forking lemma. Due to our choice of

forking, the query to Hsig in the two resulting transcripts have the same input (M,P`, L`, R`) but different

outputs. This is the condition that c` 6= c′` from the system of forgery-to-discrete-log equations and inequali-

ties. We wrap this algorithm with the following algorithm A′′ that rejects certain executions and reformats

their outputs.

Algorithm A′′: 1. Take as input some inpforkA′ = (Xh, hagg).

2. Select some random coins ρ = ρforkA′ .

3. Execute forkA
′

with inpforkA′ and these random coins.

23

4. If the result is ⊥forkA
′ , output ⊥A′′ and terminate. Otherwise, assemble together outforkA′ =

(isig, out
′) where out′ = (out, out∗) and output outforkA′ .

5. Find `sig, πsig ∈ out; find `∗sig, π
∗
sig ∈ out∗.

6. If `sig 6= `∗sig or πsig 6= π∗sig, output ⊥ and terminate. Otherwise, assemble together outA′′ =

(iagg, out
′) and output outA′′ .

The proof of the non-negligibility of the acceptance probability of A′′ is very similar to a proof presented

in [13] for the non-threshold case of LSAG signatures. We omit this, noting merely that the threshold

property of our scheme makes no difference in determining the acceptance probability.

Now we fork on iagg. This way, all queries made before this point remain the same. Moreover, since the

aggregation coefficients on the adversarially chosen keys are determined by random coins, not the hash query

tape, and due to our structure of the Hagg simulations, it is always the case that these random coins are

selected before the output for the honest key. Hence, if some algorithm is making decisions adaptively based

on previous input, the random coins chosen for the aggregation coefficients on the adversarially selected keys

are identical between the two branches with probability 1.

Algorithm forkA
′′
: Takes as input some inpforkA′′ = Xh.

1. Selects some random coins ρ = ρA′′ .

2. forkA
′′

selects hagg ← ({0, 1}η)q and sets inpA′′ = inpforkA′ = (Xh, hagg).

3. forkA
′′

runs A′′ with inpA′′ .

4. If A′′ outputs ⊥A′′ , then forkA
′′

outputs ⊥forkA
′′ and terminates. Otherwise, forkA

′′
receives

some (iagg, outA′′).

5. forkA
′′

selects h′agg ← ({0, 1}η)q, sets the gluing index j = iagg, and glues oracle query responses

together as usual

h′′agg = (hagg,1, hagg,2, . . . , hagg,j−1, h
′
agg,j , h

′
agg,j+1, . . .),

and assembles inp′A′′ = (Xh, h
′′
agg)

6. forkA
′′

runs A′′ with inp′
forkA

′′ .

7. If A′′ outputs ⊥, then forkA
′′

outputs ⊥. Otherwise, forkA
′′

receives some (i∗agg, out
∗
A′′).

8. If iagg 6= i∗agg, output ⊥forkA
′′ and terminate.

9. Otherwise, output (iagg, outforkA′′) where outforkA′′ = (outA′′ , out
∗
A′′)

The acceptance probability of forkA
′′

is bounded from below by some non-negligible function, following

the general forking lemma, bounded from below:

accforkA′′ ≥ accA′′

(
accA′′

q
− 1

2η

)
.

Lastly we construct our discrete log solver. Note that the following algorithm succeeds if and only if

forkA
′′

does, so the probability of success is identical, establishing our main theorem.

Algorithm B: B has black-box access to forkA
′′
. B takes as input an honest public key Xh and is granted

random oracle access, and outputs the discrete logarithm xh.

1. B takes as input some Xh.

24

2. B executes forkA
′′

with inp = {Xh}.
3. If forkA

′′
outputs ⊥forkA

′′ , B outputs ⊥B and terminates. Otherwise, B receives (iagg, outforkA′′).

4. B goes through outforkA′′ to extract the four signatures, σ(j) (for j ∈ [4]), the signing query

indices i
(j)
sig , the signing query responses h

(j)

sig,i
(j)
sig

, the ring indices `
(j)
sig and π

(j)
sig , the aggregation

query indices iagg and the aggregation query responses h
(j)

agg,i
(j)
agg

.

5. B verifies the following system of equalities and inequalities

i
(1)
sig =i

(2)
sig `

(1)
sig =`

(2)
sig π

(1)
sig =π

(2)
sig

i
(3)
sig =i

(4)
sig `

(3)
sig =`

(4)
sig π

(3)
sig =π

(4)
sig

i(i)agg =i(j)agg for each i, j h
(1)
agg,iagg

=h
(2)
agg,iagg

h
(3)
agg,iagg

=h
(4)
agg,iagg

h
(1)

sig,i
(1)
sig

6=h(2)

sig,i
(1)
sig

h
(3)

sig,i
(1)
sig

6=h(4)

sig,i
(1)
sig

h
(1)
agg,iagg

6=h(3)
agg,iagg

outputting ⊥B if any fail.

6. From each forg(j), the random signature data s
(j)
` can be extracted.

7. B outputs

x̂h := (h
(1)
agg,iagg

− h(3)
agg,iagg

)−1

 s
(2)
` − s

(1)
`

h
(2)

sig,i
(2)
sig

− h(1)

sig,i
(1)
sig

−
s

(4)
` − s

(3)
`

h
(3)

sig,i
(3)
sig

− h(4)

sig,i
(4)
sig

 .

Of course, B only fails if forkA
′′

fails or if the system is not verified, but this is a sub-event of

the failure of forkA
′′
. So the probability that B is bounded above by the probability that forkA

′′

fails.

B Properties other than unforgeability

We establish correctness and linkability and describe some security properties like signer ambiguity and its

relation to key aggregation indistinguishability. Correctness and linkability take into account semi-honest

adversaries, who carry out algorithms to specification (although may also take additional steps outside of

specification). In this case, this is a group of “curious but honest” friends wishing to collaborate upon a

signature.

Lemma B.0.1. Example 4.0.4 is correct.

Proof. In the event S((m, P , π, x), (m∗, σ)) where σ = (c1, s) and m∗ = (m, P , J, aux), the semi-honest signer

computes cπ+1, cπ+2, . . ., cr, and c1 with usual/honest queries made to Hsig with probability 1. Moreover,

the semi-honest verifier makes queries c2, . . . , cπ−1, cπ by making usual/honest queries toHsig with probabilty

1. The semi-honest signer also, by specification, ensured the verification equations are satisfied with use of

the secret key pπ. Hence, a semi-honest verifier given m∗ and σ = (c1, (s1, s2, . . . , sr)) who computes the

following

L′1 :=c1G+ s1P1 R′1 :=c1H1 + s1J c′2 :=Hsig(M,P1, R1, L1)

L′2 :=c′2G+ s2P2 R′2 :=c′2H2 + s2J c′3 :=Hsig(M,P2, R2, L2)

...
...

...

L′r :=c′rG+ srPr R′r :=c′rHr + srJ c′1 :=Hsig(M,Pr, Rr, Lr)

25

obtains c′1 = c1 with probability 1.

Lemma B.0.2. Example 4.0.4 is linkable.

Proof. In the event S′(m∗1, σ1,m
∗
2, σ2), the semi-honest adversary used the same key in each signature. That is

to say, for the rings P 1, P 2, there is a common key; that is, for some indices i1, i2, (P 1)i1 = (P 2)i2 = Pcommon.

In both signatures, the key image is J = PcommonHki(Pcommon), and so linking occurs with probability 1.

We modify the definition of anonymity with adversarially chosen ring members from [4] to take into

account key aggregation; the stronger definition presented in [4] with full key exposure is not possible to

satisfy in the linkable transaction setting of CryptoNote-styled ring signatures we see in Monero.

Definition B.0.3 (Threshold signer ambiguity with adversarially chosen ring members). Let f(−) be a

positive polynomial. Consider the following game:

1. A set of private-public key pairs {(xi, Xi)}i∈[f(λ)] is selected by the challenger with KeyGen. Denote

SK = {xi} and PK = {Xi}.

2. The public keys PK are sent to A, who is granted access to a signing oracle, SO.

3. A outputs a message m, two non-empty aggregation multi-sets of public keys X(0), X(1) ⊂ PK, and a

ring P such that Pij = Φ(X(j)) for j = 0, 1.

4. The challenger selects a random bit b, computes (m∗, σ)← Sign(m, P , πb) where πb denotes the index

of Pib in P , and sends (m∗, σ) to A.

5. A outputs a bit b′.

A wins the game if b′ = b and the key images for Pi0 and Pi1 do not appear in the output of any query made

to SO by A.

The following lemma, which establishes key aggregation indistinguishability, is obvious in the case with

the semi-honest adversary, since the distribution of (c1, s) in both signature schemes is determined by the

hash function Hsig and the choice made by the signer for s. Under the random oracle model, c1 is uniformly

distributed over Zp. In the case with the semi-honest adversary, each si ∈ s is also uniformly distributed

over Zp and, moreover, all of these are independent from each other.

Lemma B.0.4. Signatures produced by semi-honest adversaries using Example 4.0.4 are statistically indis-

tinguishable from LSAG signatures.

As a corollary, we immediately obtain that an adversary who can violate the signer ambiguity of Example

4.0.4 must likewise be able to violate the signer ambiguity of LSAG signatures.

Corollary B.0.5. Example 4.0.4 is signer ambiguous with adversarially chosen ring members.

26

