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1 Introduction
Recently, there have been some vague fears about the CryptoNote source code and
protocol floating around the internet based on the fact that it is a more complicated
protocol than, for instance, Bitcoin. The purpose of this note is to try and clear
up some misconceptions, and hopefully remove some of the mystery surrounding
Monero Ring Signatures. I will start by comparing the mathematics involved in
CryptoNote ring signatures (as described in [CN]) to the mathematics in [FS], on
which CryptoNote is based. After this, I will compare the mathematics of the ring
signature to what is actually in the CryptoNote codebase.

2 CryptoNote Origins
As noted in ([CN], 4.1) by Saberhagen, group ring signatures have a history starting
as early as 1991 [CH], and various ring signature schemes have been studied by a
number of researchers throughout the past two decades. As claimed in ([CN] 4.1),
the main ring signature used in CryptoNote is based on [FS], with some changes to
accomodate blockchain technology.

2.1 Traceable Ring Signatures
In [FS], Fujisaki and Suzuki introduce a scheme for a ring signature designed to
“leak secrets anonymously, without the risk of identity escrow.” This lack of a need
for identity escrow allows users of the ring signature to hide themselves in a group
with an inherently higher level of distrust compared to schemes relying on a group
manager.
In ring-signature schemes relying on a group manager, such as the original ring

signatures described in [CH], a designated trusted person guards the secrets of
the group participants. While anonymous, such schemes rely, of course, on the
manager not being compromised. The result of having a group-manager, in terms
of currencies, is essentially the same as having a trusted organization or node to
mix your coins.
In contrast, the traceable ring signature scheme given in [FS] has no group man-

ager.
According to [FS], there are four formal security requirements to their traceable

ring signature scheme:
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• Public Traceability - Anyone who creates two signatures for different mes-
sages with respect to the same tag can be traced. (In CryptoNote, if the
user opts not to use a one-time key for each transaction, then they will be
traceable, however if they desire anonymity, then they will use the one-time
key. Thus as stated on page 5 of [CN], the traceability property is weakened
in CryptoNote.)

• Tag-Linkability - Every two signatures generated by the same signer with
respect to the same tag are linked. (This aspect in CryptoNote refers to each
transaction having a key image which prevents double spending.)

• Anonymity - As long as a signer does not sign on two different messages
with respect to the same tag, the identity of the signer is indistinguishable
from any of the possible ring members. In addition, any two signatures gen-
erated with respect to two distinct tags are always unlinkable. (In terms of
CryptoNote, if the signer attempts to use the same key-image more than
once, then they can be identified out of the group. The unlinkability aspect
is retained and is a key part of CryptoNote.)

• Exculpability - An honest ring member cannot be accused of signing twice
with respect to the same tag. In other words, it should be infeasible to
counterfeit a tag corresponding to another person’s secret key. (In terms
of CryptoNote, this says that key images cannot be faked.)

In addition, [FS] provide a ring signature protocol on page 10 of their paper, which
is equivalent to the CryptoNote ring signature algorithm, as described on page 9-10
of [CN]. It is worthwhile to note that [FS] is a publicly peer-reviewed publication
appearing in Lecture Notes in Computer Science, as opposed to typical crypto-
currency protocol descriptions, where it is unclear whether or not they have been
reviewed or not.

2.2 Traceability vs CryptoNote
In the original traceable ring signature algorithm described in [FS], it is possible
to use the tag corresponding to a signature multiple times. However, multiple uses
of the tag allow the user to be traced; in other words, the signer’s index can be
determined out of the group of users signing. It is worthwhile to note that, due to
the exculpability feature of the protocol ([FS] 5.6, [CN], A2), keys cannot be stolen
this way, unless an attacker is able to solve the Elliptic Curve Discrete Logarithm
Problem (ECDLP) upon which a large portion of modern cryptography is based
([Si] XI.4).
The process to trace a tag used more than once is described on ([FS], page 10).

In the CryptoNote protocol, however, key images (tags) used more than once are
rejected by the blockchain as double-spends, and hence traceability is not an aspect
of CryptoNote.

2.3 Tag-Linkability vs CryptoNote
In essence, the tag-linkability aspect of the traceable ring signature protocol is
what prevents CryptoNote transactions from being double-spends. The relevant
protocols are referred to as “Trace” in ([FS], 5) and “LNK” in the CryptoNote
paper. Essentially all that is required is to be able to keep track of the key images
which have been used before, and to verify that a key image is not used again.
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If one key-image is detected on the blockchain before another key-image, then the
second key image is detected as a double-spend transaction. As key-images cannot
be forged, being exculpable, the double-spender must in fact be the same person,
and not another person trying to steal a wallet.

3 One-Time Ring Signatures (mathematics)
The security of the ring signature scheme as described in ([FS] 10, [CN] 10) and
implemented in the CryptoNote source relies on the known security properties of
Curve25519. Note that this is the same curve used in OpenSSH 6.5, Tor, Apple iOS,
and many other[1] security systems.

3.1 Twisted Edwards Curves
The basic security in the CryptoNote Ring Signature algorithm is guaranteed by the
ECDLP ([Si], XI.4) on the Twisted Edwards curve ed25519. The security properties
of curve ed25519 are described in [Bern], by noted cryptographer Daniel Bernstein,
and in ([BCPM]) by a team fromMicrosoft Research. Bernstein notes about ed25519
the “every known attack is more expensive than performing a brute-force search on
a typical 128-bit secret-key cipher.”
The curve ed25519 is a singular curve of genus 1 with a group law, and described

by −x2 + y2 = 1 +
(−121665

121666

)
x2y2. This curve is considered over the finite field Fq,

q = 2255 − 19. For those readers unfamiliar with algebraic geometry, an algebraic
curve is considered as a one dimensional sort of space, consisting of all points (x, y)
satisfying the above equation. All points are also considered modulo q. By virtue of
its genus, ed25519 has a “group structure” which, for the purpose of this discussion,
means if P = (x1, y1) is a point on the curve, and Q = (x2, y2) is another point
on the curve, then these points can be added (or subtracted) and the sum (or
difference), P + Q (or P − Q) will also be on the curve. The addition is not the
naive adding of x1 + x2 and y1 + y2, but instead points are added using the rule

P +Q =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 + x1x2

1− dx1x2y1y2

)
where d =

(−121665
121666

)
([BBJLP] 6, [BCPM]). The mathematics of curves of genus

one are explained in great detail in [Si] for the interested reader.
Based on the above, we can compute P +P for any such point. In order to shorten

notation, we rely on our algebraic intuition and denote 2P = P +P . If n ∈ Z, then
nP denotes the repeated sum

P + P + · · ·+ P︸ ︷︷ ︸
n times

using the above nonlinear addition law. As an example of how this differs from
ordinary addition, consider the following system of equations:

aP + bQ = X

aP ′ + bQ′ = Y

[1]http://ianix.com/pub/curve25519-deployment.html

http://ianix.com/pub/curve25519-deployment.html
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where a, b, c, d are integers and P,Q,X are points. If this were a standard system
of linear equations then one could use linear algebraic techniques to easily solve
for a and b, assuming that P,Q,X, Y, P ′, and Q′ are known. However, even if a, b
are very small the above system is extremely difficult to solve using the ed25519
addition law. For example, if a = 1 and b = 1, we have(

xP yQ + yPxQ
1 + dxPxQyP yQ

,
yP yQ + xPxQ

1− dxPxQyP yQ

)
= (xX , yX)(

xP ′yQ′ + yP ′xQ′

1 + dxP ′xQ′yP ′yQ′
,
yP ′yQ′ + xP ′xQ′

1− dxP ′xQ′yP ′yQ′

)
= (xY , yY )

So in reality, this is a system of 4 nonlinear equations. To convince yourself that
it is in fact difficult to figure out a and b, try writing the above systems assuming
a = 2, b = 1. It should become clear that the problem is extremely difficult when
a, b are chosen to be very large. As of yet, there are no known methods available to
efficiently solve this system for large values of a and b.
Consider the following problem. Suppose your friend has a random integer q,

and computes qP using the above form of addition. Your friend then tells you the
x and y coordinates qP = (x, y), but not what q itself is. Without asking, how
do you find out what q is? A naive approach might be to start with P and keep
adding P + P + P... until you reach qP (which you will know because you will end
up at (x, y)). But if q is very large then this naive approach might take billions
of years using modern supercomputers. Based on what mathematicians currently
know about the problem and the number of possible q, none of the currently known
attacking techniques can, as a general rule, do better in any practical sense than
brute force.
In CryptoNote, your secret key is essentially just a very, very large number x

(for other considerations, see section 4.3.3, we choose x to be a multiple of 8).
There is a special point G on the curve ed25519 called “the base point” of the curve
which is used as the starting point to get xG. Your public key is just xG, and
you are protected by the above problem from someone using known information to
determine the private key.

3.2 Relation to Diffie Helman
Included in a ring signature are the following equations involving your secret key x:

P = xG

I = xHp (P )

rs = qs − csx.

Here s is a number giving the index in the group signature to your public key, and
Hp (P ) is a hash function which deterministically takes the point P to another point
P ′ = x′G, where x′ is another very large uniformly chosen number. The value qs is
chosen uniformly at random, and cs is computed using another equation involving
random values. The particular hash function used in CryptoNote is Keccak1600,
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used in other applications such as SHA-3; it is currently considered to be secure
([FIPS]). The CryptoNote use of a single hash function is consistent with the stan-
dard procedure of consolidating distinct random oracles (in proofs of security in
[FS], for example) into a single strong hash function.
The above equations can be written as follows:

P = xG

P ′ = xx′G′

rs = qs − csx

Solving the top two equations is equivalent to the ECDH (as outlined in a previ-
ous note ([SN])) and is the same practical difficulty as the ECDLP. Although the
equations appear linear, they are in fact highly non-linear, as they use the addition
described in 3.1 and above. The third equation (with unknowns qs and x), has the
difficulty of finding a random number (either qs or x) in Fq, a very large finite field;
this is not feasible. Note that as the third equation has two unknowns, combining
it with the previous two equations does not help; an attacker needs to determine at
least one of the random numbers qs or x.

3.3 Time Cost to Guess q or x
Since q and x are assumed to be random very large numbers in Fq , with q =

2255 − 19 (generated as 32-byte integers), this is equivalent to a 128-bit security
level ([BCPM]), which is known to take billions of years to compute with current
supercomputers.

3.4 Review of Proofs in Appendix
In the CryptoNote appendix, there are four proofs of the four basic properties
required for security of the one-time ring-signature scheme:
• Linkability (protection against double-spending)
• Exculpability (protection of your secret key)
• Unforgeability (protection against forged ring signatures)
• Anonymity (ability to hide a transaction within other transactions)

These theorems are essentially identical to those in [FS] and show that the ring
signature protocol satisfies the above traits. The first theorem shows that only the
secret keys corresponding to the public keys included in a group can produce a
signature for that group. This relies on the ECDLP for the solution of two simulta-
neous (non-linear) elliptic curve equations, which, as explained in 3.2, is practically
unsolvable. The second theorem uses the same reasoning, but shows that in order to
create a fake signature that passes verification, one would need to be able to solve
the ECDLP. The third and fourth theorems are taken directly from [FS].

4 One-Time Ring Signatures (Application)
To understand how CryptoNote is implementing the One-Time Ring signatures,
I built a model in Python of Crypto-ops.cpp and Crypto.cpp from the Monero
source code using naive Twisted Edwards Curve operations (taken from code by
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Bernstein), rather than the apparently reasonably optimized operations existing in
the CryptoNote code. Functions are explained in the code comments below. Using
the model will produce a working ring signature that differs slightly from the Monero
ring signatures only because of hashing and packing differences between the used
libraries. The full code is hosted at the following address:

https://github.com/monero-project/mininero
Note that most of the important helper functions in crypto-ops.cpp in the
CryptoNote source are pulled from the reference implementation of Curve25519.
This reference implentation was coded by Matthew Dempsky (Mochi Media, now
Google)[2].
In addition, after comparing the python code to the paper, and in turn comparing

the python code to the actual Monero source, it is fairly easy to see that functions
like generate_ring_sig are all doing what they are supposed to based on the pro-
tocol described in the whitepaper. For example, here is the ring signature generation
algorithm used in the CryptoNote source:

Algorithm 1 Ring Signatures
i← 0
while i < numkeys do

if i = s then
k ← random Fq element
Li ← k ·G
Ri ← k · Hp(Pi)

else
k1← random Fq element
k2← random Fq element
Li ← k1Pi + k2G
Ri ← k1I + k2Hp(Pi)
ci ← k1
ri ← k2

end if
i← i+ 1

end while
h←Hs(prefix+ L′

is+R′
is))

cs ← h−
∑

i 6=s ci
rs ← k − xcs
return (I, {ci}, {ri})

Comparing this with [CN] shows that it agrees with the whitepaper. Similarly,
here is the algorithm used in the CryptoNote source to verify ring signatures:

Algorithm 2 VER
i = 0
while i < numkeys do

L′
i ← ciPi + riG

R′
i ← riHp(Pi) + ciI

i← i+ 1
end while
h←Hs(prefix+ L′

is+R′
is))

h← h−
∑

i 6=s ci
return (h == 0(mod q)) == 0

4.1 Important Crypto-ops Functions
Descriptions of important functions in Crypto-ops.cpp. Even more references and
information is given in the comments in the MiniNero.py code linked above.

[2]http://nacl.cr.yp.to/

https://github.com/monero-project/mininero
http://nacl.cr.yp.to/
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4.1.1 ge_frombytes_vartime
Takes as input some data and converts to a point on ed25519. For a reference of
the equation used, β = uv3

(
uv7
)(q−5)/8, see ([BBJLP], section 5).

4.1.2 ge_fromfe_frombytesvartime
Similar to the above, but compressed in another form.

4.1.3 ge_double_scalarmult_base_vartime
Takes as inputs two integers a and b and a point A on ed25519 and returns the
point aA + bG, where G is the ed25519 base point. Used for the ring signatures
when computing, for example, Li with i 6= s as in ([CN], 4.4)

4.1.4 ge_double_scalarmult_vartime
Takes as inputs two integers a and b and two points A and B on ed25519 and
outputs aA+ bB. Used, for example, when computing the Ri in the ring signatures
with i 6= s ([CN], 4.4)

4.1.5 ge_scalarmult
Given a point A on ed25519 and an integer a, this computes the point aA. Used for
example when computing Li and Ri when i = s.

4.1.6 ge_scalarmult_base
Takes as input an integer a and computes aG, where G is the ed25519 base point.

4.1.7 ge_p1p1_to_p2
There are different representations of curve points for ed25519, this converts between
them. See MiniNero for more reference.

4.1.8 ge_p2_dbl
This takes a point in the “p2” representation and doubles it.

4.1.9 ge_p3_to_p2
Takes a point in the “p3” representation on ed25519 and turns it into a point in the
“p2” representation.

4.1.10 ge_mul8
This takes a point A on ed25519 and returns 8A.

4.1.11 sc_reduce
Takes a 64-byte integer and outputs the lowest 32 bytes modulo the prime q. This is
not a CryptoNote-specific function, but comes from the standard ed25519 library.

4.1.12 sc_reduce32
Takes a 32-byte integer and outputs the integer modulo q. Same code as above,
except skipping the 64→32 byte step.
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4.1.13 sc_mulsub
Takes three integers a, b, c in Fq and returns c− ab modulo q.

4.2 Important Hashing Functions
4.2.1 cn_fast_hash
Takes data and returns the Keccak1600 hash of the data.

4.3 Crypto.cpp Functions
4.3.1 random_scalar
Generates a 64-byte integer and then reduces it to a 32 byte integer modulo q for
128-bit security as described in section 3.3.

4.3.2 hash_to_scalar
Inputs data (for example, a point P on ed25519) and outputs Hs (P ), which is
the Keccak1600 hash of the data. The function then converts the hashed data to a
32-byte integer modulo q.

4.3.3 generate_keys
Returns a secret key and public key pair, using random_scalar (as described above)
to get the secret key. Note that, as described in [Bern], the key set for ed25519 actu-
ally is only multiples of 8 in Fq, and hence ge_scalarmult_base includes a ge_mul8
to ensure the secret key is in the key set. This prevents transaction malleability at-
tacks as described in ([Bern], c.f. section on “small subgroup attacks”). This is part
of the GEN algorithm as described in ([CN], 4.4).

4.3.4 check_key
Inputs a public key and outputs if the point is on the curve.

4.3.5 secret_key_to_public_key
Inputs a secret key, checks it for some uniformity conditions, and outputs the cor-
responding public key, which is essentially just 8 times the base point times the
point.

4.3.6 hash_to_ec
Inputs a key, hashes it, and then does the equivalent in bitwise operations of mul-
tiplying the resulting integer by the base point and then by 8.

4.3.7 generate_key_image
Takes as input a secret key x and public key P , and returns I = xHp (P ), the key
image. This is part of the GEN algorithm as described in ([CN], 4.4).

4.3.8 generate_ring_signature
Computes a ring signature, performing SIG as in ([CN], 4.4) given a key image I,
a list of n public keys Pi, and a secret index. Essentially there is a loop on i, and if
the secret-index is reached, then an if-statement controls the special computation
of Li, Ri when i is equal to the secret index. The values ci and ri for the signature
are computed throughout the loop and returned along with the image to create the
total signature (I, c1, ..., cn, r1, ..., rn) .
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4.3.9 check_ring_signature
Runs the VER algorithm in ([CN], 4.4). The verifier uses a given ring signature
to compute L′i = riGi, R′i = riHp (Pi) + ciI, and finally to check if

∑n
i=0 ci =

Hs (m,L
′
0, ..., L

′
n, R

′
0, ..., R

′
n) mod l.

4.3.10 generate_key_derivation
Takes a secret key b, and a public key P , and outputs 8·bP . (The 8 being for the pur-
pose of the secret key set, as described in 4.3.3). This is used in derive_public_key
as part of creating one-time addresses.

4.3.11 derivation_to_scalar
Performs Hs (−) as part of generating keys in ([CN], 4.3, 4.4). It hashes an output
index together with the point.

4.3.12 derive_public_key
Takes a derivation rA (computed via generate_key_derivation), a point B, and
an output index, computes a scalar via derivation_to_scalar, and then computes
Hs (rA) +B.

4.3.13 generate_signature
This takes a prefix, a public key, and a secret key, and generates a standard (not
ring) transaction signature (similar to a Bitcoin transaction signature).

4.3.14 check_signature
This checks if a standard (not ring) signature is a valid signature.

5 Conclusion
Despite the ring signature functions in the original CryptoNote source being poorly
commented, the code can be traced back to established and used sources, and is rel-
atively straightfoward. The Python implementation provided with this review gives
further indication of the code’s correctness. Furthermore, the elliptic curve mathe-
matics underlying the ring signature scheme has been extremely well-studied; the
concept of ring signatures is not novel, even if their application to cryptocurrencies
is.
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