
c©Monero Research Lab

RESEARCH BULLETIN MRL-0002

Counterfeiting via Merkle Tree Exploits within
Virtual Currencies Employing the CryptoNote
Protocol
12 September 2014

Jan Macheta1, Sarang Noether2*, Surae Noether2 and Javier Smooth2

*Correspondence: lab@monero.cc
2 Monero Research Lab

(Full list of author information on

last page)

Abstract

On 4 September 2014, an unusual and novel attack was executed against the
Monero cryptocurrency network. This attack partitioned the network into two
distinct subsets which refused to accept the legitimacy of the other subset. This
had myriad effects, not all of which are yet known. The attacker had a short
window of time during which a sort of counterfeiting could occur, for example.
This research bulletin describes deficiencies in the CryptoNote reference code
allowing for this attack, describes the solution initially put forth by Rafal Freeman
from Tigusoft.pl and subsequently by the CryptoNote team, describes the current
fix in the Monero code base, and elaborates upon exactly what the offending
blcok did to the network. This research bulletin has not undergone peer review,
and reflects only the results of internal investigation.

1 Introduction
On 4 September 2014, a novel attack was executed against the Monero cryptocur-

rency network, leading to a never-before-seen phenomenon in the network. The

attacker must have had extensive knowledge of the Monero code, had good knowl-

edge of Merkle Trees, and basic knowledge of cryptographic hash functions.

The Monero code was forked from the Bytecoin reference code in April 2014

before the CryptoNote reference code was released. The Bytecoin code appeared to

be somewhat obfuscated and poorly commented, so any given segment of code must

necessarily be considered with skepticism. Hence, any attacker with an extensive

knowledge of the Monero code also, presumably, has an extensive knowledge of the

Bytecoin and CryptoNote reference codes.

A Merkle Tree is a data structure in which every non-leaf node in the tree gains

a label, and the label is the hash of the child nodes[3]. That is to say, to build a

Merkle Tree, we take some blocks of data (transactions), and we hash them. Then

we hash those, two at a time. Then we hash those, two at a time. And we repeat

this process until we are done. You can think of a Merkle Tree as a football bracket

of cryptographic hashes. A natural question arises: what if we do not have a nice,

even, power-of-two, divisible number of transactions? This is where the exploit came

in, as we will see later.

mailto:lab@monero.cc


c©Monero Research Lab Page 2 of 7

CryptoNote currencies, and indeed, most cryptocurrencies, use Merkle Trees to

construct the hash of a block of transactions (which is subsequently packed into the

header of the block). The attacker noticed that a mis-implementation of a commonly

used power-of-two rounding algorithm could be exploited while computing the hash

of a block in order to generate two distinct blocks with the same hash. This should

be all but impossible, of course, as collisions of cryptographic hash functions are

rare. When discussing the rarity of these collisions, comparisons like “how many

fundamental particles exist in the universe?” start to pop up, and usually those

numbers are not big enough to describe collision rarity. In general, hash collisions

typically imply mis-implementation rather than a failure of the hash functions,

presuming we are using a good hash function [2].

To the authors’ best knowledge, this attack has only occurred once. Although

Monero was the target, any coin utilizing CryptoNote reference code from before

4 September 2014 suffered the mis-implementations allowing for such exploitation,

with two exceptions. Fantomcoin and Moneta Verde apparently fixed the relevant

exploit in secret several months ago. Again, only to the authors’ best knowledge,

all popular CryptoNote currencies have implemented the changes described by R.

Freeman and the CryptoNote team, although we have not performed an extensive

code review. The purpose of this document is to describe the section of code that

allowed this attack and to elaborate on the attack’s effects. For a slightly different

take on the attack, see, for example, [1].

2 Exploitation of the CryptoNote Reference Code
Throughout this section, we abuse terminology slightly when we say CryptoNote

reference code, as Monero was forked from ByteCoin before the CryptoNote refer-

ence code was released; we do not fear confusion in the reader. The exploitation of

the CryptoNote reference code can be understood using the football bracket anal-

ogy described before: what happens when the data we wish to hash does not come

in nice, even powers of two? We simply take any overflow above a power of two and

play a smaller, first-round bracket, where all other, pre-overflow data gets a bye [1]

to the next round. Of course, this just kicks the can down the road to the next

smallest power of two, but eventually this process will stop at two teams and we

can proceed with our bracket like usual. In order to perform this strategy, we wish

to first figure out how many teams we really do have playing.

Of course, in order to do this, the size, length, or measure of the current data

set needs to be rounded down to the greatest power of two strictly less than the

current data size; all data above this amount (in terms of indices) needs to be

folded into the data below this amount with cryptographic hash functions. This is

where the exploit came in. The cutoff index splitting above versus below was being

miscomputed. The attacker noticed that this would allow some data to be ignored

when computing the hash of a block, and so two distinct blocks could obtain the

same hash. This was not due to any sort of failure of the hashing functions used,

but, as described above, a failure in a measurement of the size of the “real” data to

be used in construction of the Merkle Tree.

The following code in src/crypto/tree-hash.c was exploited:

[1]Not byte.



c©Monero Research Lab Page 3 of 7

src/crypto/tree -hash.c:

46 size_t cnt = count - 1;
48 for (i = 1; i < sizeof(size_t); i <<= 1) {
49 cnt |= cnt >> i;
50 }
51 cnt &= ~(cnt >> 1);

The goal of this code, a version of a commonly used algorithm, is to round the

number count to largest power of two that is strictly smaller than count, setting

this value as cnt[4].

Input Output

100 64

255 128

512 256

513 512

1205 1024
To understand how this segment of code works, we’ll first consider a toy example

and then compare it to how the algorithm actually works. Suppose we want to

determine the largest power of two strictly less than the integer 1205. Define x to

be the binary number formed by decrementing the integer 1205 and setting every

bit to the right of the most significant bit to one:

120410 = 100101101002 ⇒ x = 111111111112

We next set y to be the binary number formed by performing a single right-shift

on x and taking its negative:

y = x� 1 = 011111111112 = 100000000002

The result is the number xy, using the binary AND operation:

xy = 111111111112 · 100000000002 = 100000000002 = 102410

We now compare this toy example to the algorithm in the above-referenced

block of code from src/crypto/tree-hash.c. Assume, as is true for most mod-

ern architectures, that sizeof(size t) = 8; in this case, we have i ∈ {1, 2, 4},
so the loop executes three times. Consider the operation of the code from

src/crypto/tree-hash.c using the sample data count = 51310:

cnt = 513− 1 = 51210 = 10000000002

i = 1 : cnt = 10000000002 + 01000000002 = 11000000002

i = 2 : cnt = 11000000002 + 00110000002 = 11110000002

i = 4 : cnt = 11110000002 + 00001111002 = 11111111002

Observe that because the loop executes only three times, we did not change the

state of the two least significant bits. The algorithm proceeds:

cnt = 11111111002 · 1000000012 = 10000000002 = 51210



c©Monero Research Lab Page 4 of 7

We obtain the correct result. Suppose, however, that we instead use the sample

data count = 51410:

cnt = 514− 1 = 51310 = 10000000012

i = 1 : cnt = 10000000012 + 01000000002 = 11000000012

i = 2 : cnt = 11000000012 + 00110000002 = 11110000012

i = 4 : cnt = 11110000012 + 00001111002 = 11111111012

Similar to before, the last two bits remain unchanged. The algorithm proceeds:

cnt = 11111111012 · 10000000012 = 10000000012 = 51310

This is clearly incorrect, as we expect the algorithm to output the integer 512. This

mis-implementation of the previously described rounding algorithm was the root of

the exploitation of the CryptoNote reference code. Let us consider the ramifications

of the mis-implementation of this rounding down by considering the affected code

further down the line:

src/crypto/tree -hash.c:

47 char (*ints)[HASH_SIZE ];
52 ints = alloca(cnt * HASH_SIZE);
53 memcpy(ints , hashes , (2 * cnt - count) * HASH_SIZE);
54 for (i = 2 * cnt - count , j = 2 * cnt - count; j < cnt; i += 2, ++

j) {
55 cn_fast_hash(hashes[i], 64, ints[j]);
56 }
57 assert(i == count);
58 while (cnt > 2) {
59 cnt >>= 1;
60 for (i = 0, j = 0; j < cnt; i += 2, ++j) {
61 cn_fast_hash(ints[i], 64, ints[j]);
62 }
63 }
64 cn_fast_hash(ints[0], 64, root_hash);

In this code block, lines 47 through 56 perform the following tasks. We allocate

an array of hashes to ints. We take what we think is supposed to be the data from

the original hashes that has not yet overflowed our desired power-of-two structure,

and we use memcpy to copy the data into ints. However, the quantity 2·cnt−count
is, as previously described, an overestimate of this amount of data. For example,

the known exploit described above will round down the number 514 to 513, not 512.

Hence, setting cnt= 513 and count= 514, we see that we copy 2·cnt−count= 512

elements, filling all of the array that is used in subsequent hashing rounds. However,

we should have computed cnt= 512, copying 2·cnt−count= 510 pieces of data.

Thus, the bug previously reported leads to two pieces of data being wholly ignored.

That is to say, the first 2·cnt−count hashes should receive a bye in the sports

analogy, advancing to the next round without actually playing any games (or rather,

being hashed with any other data). Since cnt is being overestimated, too much data

is being passed forth without being properly handled, leaving the remaining data



c©Monero Research Lab Page 5 of 7

unused. Of course, we still hash the remaining data together, but these hashes are

not used.

Note the stunning degree of technicality required to find and exploit this bug.

Someone out there is very, very, very smart to not only find, but also to exploit, this

deep bug. They know algorithms extremely well, and they appear to be malicious.

3 Fixes Applied
On 4 September 2014, the same date as the attack, the first solution to the exploit

was publicly announced by Rafal Freeman from Tigusoft.pl[2]. The solution is not

a unique one, as the CryptoNote reference code implements a different solution[3].

The CryptoNote solution establishes a “quick fix” in src/crypto/tree-hash.c, by

using the ending condition 8·sizeof(size t), causing their loop to iterate through

all bits in cnt. However, without adequate checks on the size of cnt, it may be

possible to choose a suitably large value to conduct the same attack. Furthermore,

using magic numbers is, simply, a generally frowned-upon practice in computer

science and cryptographic protocols. Then again, so is code obfuscation, and it is

considered good form to comment your code, both of which the CryptoNote team

is ostensibly guilty.

The Monero codebase, by contrast, establishes checks on the size of cnt and uses

the following rounding algorithm:

src/crypto/tree -hash.c:

47 assert( count >= 3); // cases for 0,1,2 are handled elsewhere
49 size_t tmp = count - 1;
50 size_t jj = 1;
51 for (jj=1 ; tmp != 0 ; ++jj) {
52 tmp /= 2;
53 }
54 size_t cnt = 1 << (jj -2);
56 assert( cnt > 0 ); assert( cnt >= count /2 ); assert( cnt <= count

);
57 assert( ispowerof2_size_t( cnt ));
58 return cnt;

This algorithm determines the number of powers of two less than cnt and performs

an appropriate bitshift to recover the correct power of two. This algorithm does not

suffer from the same size limitations as the CryptoNote fix.

4 Effects of the Attack
Once two blocks with the same hash were published nearly-simultaneously, part of

the network had one block and the rest of the network had the other block (ignoring

nodes that had not yet received the block). Simply checking transaction hashes on

the opposing half of the network would cause a fault. This partitioned the network

into two distinct subsets which refused to accept the legitimacy of the other subset.

For awhile, the network was split into two. A reader may be tempted to call this a

fork in the blockchain. Be wary. Calling this a fork would be inappropriate. Indeed,

a fork occurs when two competing chains of transactions in the block-tree, both of

which are ostensibly legitimate, compete for network hash rate. Eventually, one of

[2]see Monero commit 2ef0aee81d20c002ed50d6dec4baceee1ac40b44
[3]see CryptoNote commit 6be8153a8bddf7be43aca1efb829ba719409787a

https://github.com/monero-project/bitmonero/commit/2ef0aee81d20c002ed50d6dec4baceee1ac40b44
https://github.com/cryptonotefoundation/cryptonote/commit/6be8153a8bddf7be43aca1efb829ba719409787a


c©Monero Research Lab Page 6 of 7

the two chains will win since the network uses the “longest chain” decision method

proposed by Satoshi Nakamoto. Furthermore, although it’s extremely difficult, it’s

theoretically possible that, after a time, the network switches from one chain to

another if it grows long enough.

The two parts of the network refused to accept the legitimacy of the blockchain

upon which the other part was operating. It was as if, suddenly, half the Monero

network switched to a brand new CryptoNote coin’s blockchain. It still appeared to,

say, currency exchanges or vendors, that they were both one network still working

on Monero.

This had myriad effects, not all of which are yet known. For one thing, balances

were essentially doubled. If you had 1.0 XMR before the attack, you now had 1.0

XMR on each version of the network during the doubling. One could fancifully

interpret this as a counterfeiting scenario: the attacker published two blocks with

the same hash, and now instead of one network, there are two and the attacker

has double the balance. The attacker had a short window of time during which

they could sell “counterfeit” Monero from the new network on an exchange such as

Poloniex for Bitcoin and immediately withdraw. The attacker still has his original

balance on the “old” network, of course. With the major exception of MintPal, most

major exchanges dealing with Monero were able to freeze those transactions during

the attack.

For currently unknown reasons, most major Monero mining pools ended up to-

gether on one side of the network; this could have simply been a result of demo-

graphic stochasticity as the network pulled itself apart, or it could be a deterministic

result of the speed at which blocks propagate. Indeed, if two blocks with the same

block hash hit the network simultaneously, and if one block is heard by a large pool

before the other due to stochasticity, it is almost certain that block will be heard by

more of the network than the other. On the other hand, if two blocks with the same

block hash hit the network nearly simultaneously but randomness is excluded, the

first block will be the dominant block.

No matter what, the much smaller side of the network, of course, had significantly

lower hashing power, and began experiencing terrifying errors. The difficulty was

inherited from before the split, as well. Due to the protocol within CryptoNote to

ignore outliers in block duration while computing difficulty, it would take somewhere

between three days and one week for the B network to adjust difficulty so as to

compensate. Any node stuck on the B side of the network saw a dramatic drop in

their profitability; this, as well as the error spam they have received, has caused

most nodes to resync their blockchain, or to reboot their computer, or something

along those lines. The B side has all but vanished at this point, but the effects of the

Block 202612 attack still linger on the Monero network. The Monero development

team released patch 0.8.8.3 on 6 September 2014 to ensure that this attack can never

occur via this route again, to allow miners to identify the A side of the network

(that is, the A-side version of block 202612), and to identify foreign nodes with the

B-side version of block 202612.

There may be other, as-yet-unknown, longer-term effects of having block 202612

stored in the blockchain. There may be other, as-yet-unknown, longer-term effects

of using the transactions validated in that block as obfuscating elements in new ring



c©Monero Research Lab Page 7 of 7

signatures, if the owners of those transactions (presumably the attackers) proceed

to spend those transactions with zero mix-ins.

Author details
1 Tigusoft.pl. 2 Monero Research Lab.

References
1. Werner Albert. Monero Network Exploit Post-Mortem, 2014 (accessed Sept 15, 2014).

https://forum.cryptonote.org/viewtopic.php?f=7&t=270.

2. Ross Anderson. The classification of hash functions. 1993.

3. Ralph C Merkle. A digital signature based on a conventional encryption function. In Advances in

Cryptology—CRYPTO’87, pages 369–378. Springer, 1988.

4. John Viega and Matt Messier. Secure Programming Cookbook for C and C++: Recipes for Cryptography,

Authentication, Input Validation & More. O’Reilly Media, Inc., 2003.

https://forum.cryptonote.org/viewtopic.php?f=7&t=270

	Abstract
	Introduction
	Exploitation of the CryptoNote Reference Code
	Fixes Applied
	Effects of the Attack

